Hendricksburnham3970

Z Iurium Wiki

We present an information-theoretic approach inspired by distributional clustering to assess the structural heterogeneity of particulate systems. Our method identifies communities of particles that share a similar local structure by harvesting the information hidden in the spatial variation of two- or three-body static correlations. This corresponds to an unsupervised machine learning approach that infers communities solely from the particle positions and their species. We apply this method to three models of supercooled liquids and find that it detects subtle forms of local order, as demonstrated by a comparison with the statistics of Voronoi cells. Finally, we analyze the time-dependent correlation between structural communities and particle mobility and show that our method captures relevant information about glassy dynamics.High Rydberg states of nitric oxide (NO) with principal quantum numbers between 40 and 100 and lifetimes in excess of 10 µs have been prepared by resonance enhanced two-color two-photon laser excitation from the X 2Π1/2 ground state through the A 2Σ+ intermediate state. Molecules in these long-lived Rydberg states were detected and characterized 126 µs after laser photoexcitation by state-selective pulsed electric field ionization. The laser excitation and electric field ionization data were combined to construct two-dimensional spectral maps. These maps were used to identify the rotational states of the NO+ ion core to which the observed series of long-lived hydrogenic Rydberg states converge. The results presented pave the way for Rydberg-Stark deceleration and electrostatic trapping experiments with NO, which are expected to shed further light on the decay dynamics of these long-lived excited states, and are of interest for studies of ion-molecule reactions at low temperatures.The superposition of atomic potentials (SAP) approach has recently been shown to be a simple and efficient way to initialize electronic structure calculations [S. Lehtola, J. Chem. Theory Comput. 15, 1593-1604 (2019)]. Here, we study the differences between effective potentials from fully numerical density functional and optimized effective potential calculations for fixed configurations. We find that the differences are small, overall, and choose exchange-only potentials at the local density approximation level of theory computed on top of Hartree-Fock densities as a good compromise. The differences between potentials arising from different atomic configurations are also found to be small at this level of theory. Furthermore, we discuss the efficient Gaussian-basis implementation of SAP via error function fits to fully numerical atomic radial potentials. The guess obtained from the fitted potentials can be easily implemented in any Gaussian-basis quantum chemistry code in terms of two-electron integrals. Fits covering the whole periodic table from H to Og are reported for non-relativistic as well as fully relativistic four-component calculations that have been carried out with fully numerical approaches.Determining the influence of the solvent on electrochemical reaction energetics is a central challenge in our understanding of electrochemical interfaces. To date, it is unclear how well existing methods predict solvation energies at solid/liquid interfaces, since they cannot be assessed experimentally. Ab initio molecular dynamics (AIMD) simulations present a physically highly accurate, but also a very costly approach. In this work, we employ extensive AIMD simulations to benchmark solvation at charge-neutral metal/water interfaces against commonly applied continuum solvent models. We consider a variety of adsorbates including *CO, *CHO, *COH, *OCCHO, *OH, and *OOH on Cu, Au, and Pt facets solvated by water. The surfaces and adsorbates considered are relevant, among other reactions, to electrochemical CO2 reduction and the oxygen redox reactions. We determine directional hydrogen bonds and steric water competition to be critical for a correct description of solvation at the metal/water interfaces. As a consequence, we find that the most frequently applied continuum solvation methods, which do not yet capture these properties, do not presently provide more accurate energetics over simulations in vacuum. We find most of the computed benchmark solvation energies to linearly scale with hydrogen bonding or competitive water adsorption, which strongly differ across surfaces. Thus, we determine solvation energies of adsorbates to be non-transferable between metal surfaces, in contrast to standard practice.Minimum-energy conical intersection (MECI) geometries play an important role in photophysics, photochemistry, and photobiology. In a previous study [Nakai et al., J. Phys. Chem. A 122, 8905 (2018)], frozen orbital analysis at the MECI geometries between the ground and first electronic excited states (S0/S1 MECI), which considers the main configurations contributing to the excitation, inductively clarified two controlling factors. First, the exchange integral between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) approximately becomes zero. Second, the HOMO-LUMO gap becomes close to the HOMO-LUMO Coulomb integral. This study applies the controlling factors to the penalty function method, which is the standard MECI optimization technique, and minimizes the energy average of the two states with the constraint that the energy gap between the states vanishes. Numerical assessments clarified that the present method could obtain the S0/S1 MECI geometries more efficiently than the conventional one.Stochastic models are key to understanding the intricate dynamics of gene expression. However, the simplest models that only account for active and inactive states of a gene fail to capture common observations in both prokaryotic and eukaryotic organisms. Here, we consider multistate models of gene expression that generalize the canonical Telegraph process and are capable of capturing the joint effects of transcription factors, heterochromatin state, and DNA accessibility (or, in prokaryotes, sigma-factor activity) on transcript abundance. We propose two approaches for solving classes of these generalized systems. The first approach offers a fresh perspective on a general class of multistate models and allows us to "decompose" more complicated systems into simpler processes, each of which can be solved analytically. This enables us to obtain a solution of any model from this class. Next, we develop an approximation method based on a power series expansion of the stationary distribution for an even broader class of multistate models of gene transcription. We further show that models from both classes cannot have a heavy-tailed distribution in the absence of extrinsic noise. The combination of analytical and computational solutions for these realistic gene expression models also holds the potential to design synthetic systems and control the behavior of naturally evolved gene expression systems in guiding cell-fate decisions.When a dilute aqueous solution freezes at 1 atm, it is segregated into water-rich ice Ih and solute-rich freeze-concentrated glassy solution. A similar segregation is observed at the crystallization of homogeneous glassy aqueous solutions by heating. The influence of solutes on the nucleation of solvent water and the solute discharge process from the crystalline ice are not clear. In this study, I made a homogeneous dilute glassy glycerol aqueous solution (0.07 mol fraction) using pressure liquid cooling vitrification (PLCV), measured the specific volume and the sample temperature during the compression and decompression processes, and examined the polyamorphic and crystallization behaviors. It is found that the sample crystallized slightly above the crystallization temperature is amorphized homogeneously under pressure, and that the amorphized sample is equivalent to the homogeneous glassy sample made by PLCV. This indicates that glycerol solutes in the crystalline sample are dispersed homogeneously and the crystalline sample does not segregate. These experimental results suggest that nucleation does not involve segregation and that crystal growth induces segregation. The discovery of the non-segregated crystalline state has an implication in not only the understanding of crystallization of glassy ice in meteorology and planetary physics but also the application to cell thawing techniques in cryobiology and food engineering.Both the translational diffusion coefficient D and the electrophoretic mobility μ of a short rod-like molecule (such as dsDNA) that is being pulled toward a nanopore by an electric field should depend on its orientation. Since a charged rod-like molecule tends to orient in the presence of an inhomogeneous electric field, D and μ will change as the molecule approaches the nanopore, and this will impact the capture process. We present a simplified study of this problem using theoretical arguments and Langevin dynamics simulations. In particular, we introduce a new orientational capture radius, which we compare to the capture radius for the equivalent point-like particle, and we discuss the different physical regimes of orientation during capture and the impact of initial orientations on the capture time.Functional soft materials, comprising colloidal and molecular building blocks that self-organize into complex structures as a result of their tunable interactions, enable a wide array of technological applications. Inverse methods provide a systematic means for navigating their inherently high-dimensional design spaces to create materials with targeted properties. While multiple physically motivated inverse strategies have been successfully implemented in silico, their translation to guiding experimental materials discovery has thus far been limited to a handful of proof-of-concept studies. In this perspective, we discuss recent advances in inverse methods for design of soft materials that address two challenges (1) methodological limitations that prevent such approaches from satisfying design constraints and (2) computational challenges that limit the size and complexity of systems that can be addressed. Strategies that leverage machine learning have proven particularly effective, including methods to discover order parameters that characterize complex structural motifs and schemes to efficiently compute macroscopic properties from the underlying structure. RZ-2994 We also highlight promising opportunities to improve the experimental realizability of materials designed computationally, including discovery of materials with functionality at multiple thermodynamic states, design of externally directed assembly protocols that are simple to implement in experiments, and strategies to improve the accuracy and computational efficiency of experimentally relevant models.We present an extension of the multiparticle collision dynamics method for flows with complex interfaces, including supramolecular near-contact interactions mimicking the effect of surfactants. The new method is demonstrated for the case of (i) short range repulsion of droplets in close contact, (ii) arrested phase separation, and (iii) different pattern formation during spinodal decomposition of binary mixtures.

Autoři článku: Hendricksburnham3970 (Day Riggs)