Heidekinney5501
minutum, A. tamarense, A. pacificum, A. catenella, A. andersonii and A. ostenfeldii), 5S rDNA gene arrays were separate from the nucleolar organizer region, which contains the genes for the large 45S pre-ribosomal RNA. 4) One to three 5S rDNA sites per haploid genome were detected, depending on the strains/species. Intraspecific variability in the number of 5S rDNA sites was determined among strains of A. minutum and A. pacificum. 5) 5S rDNA is a useful chromosomal marker of mitosis progression and can be employed to differentiate vegetative (haploid) vs. planozygotes (diploid) cells. Thus, the FISH probe (oligo-Dino5Smix5) developed in this study facilitates analyses of the diversity, cell cycle and life stages of the genus Alexandrium.A recently published study analyzed the phylogenetic relationship between the genera Centrodinium and Alexandrium, confirming an earlier publication showing the genus Alexandrium as paraphyletic. This most recent manuscript retained the genus Alexandrium, introduced a new genus Episemicolon, resurrected two genera, Gessnerium and Protogonyaulax, and stated that "The polyphyly [sic] of Alexandrium is solved with the split into four genera". However, these reintroduced taxa were not based on monophyletic groups. Therefore this work, if accepted, would result in replacing a single paraphyletic taxon with several non-monophyletic ones. The morphological data presented for genus characterization also do not convincingly support taxa delimitations. The combination of weak molecular phylogenetics and the lack of diagnostic traits (i.e., autapomorphies) render the applicability of the concept of limited use. The proposal to split the genus Alexandrium on the basis of our current knowledge is rejected herein. The aim here is not to present an alternative analysis and revision, but to maintain Alexandrium. A better constructed and more phylogenetically accurate revision can and should wait until more complete evidence becomes available and there is a strong reason to revise the genus Alexandrium. The reasons are explained in detail by a review of the available molecular and morphological data for species of the genera Alexandrium and Centrodinium. In addition, cyst morphology and chemotaxonomy are discussed, and the need for integrative taxonomy is highlighted.Exposure to harmful algal blooms (HABs) can lead to well recognised acute patterns of illness in humans. The objective of this scoping review was to use an established methodology and the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) reporting framework to map the evidence for associations between marine HABs and observed both acute and chronic human health effects. A systematic and reproducible search of publications from 1985 until May 2019 was conducted using diverse electronic databases. Following de-duplication, 5301 records were identified, of which 380 were included in the final qualitative synthesis. The majority of studies (220; 57.9%) related to Ciguatera Poisoning. Anecdotal and case reports made up the vast majority of study types (242; 63.7%), whereas there were fewer formal epidemiological studies (35; 9.2%). Only four studies related to chronic exposure to HABs. A low proportion of studies reported the use of human specimens for confirmation of the cause of illness (32; 8.4%). This study highlighted gaps in the evidence base including a lack of formal surveillance and epidemiological studies, limited use of toxin measurements in human samples, and a scarcity of studies of chronic exposure. Future research and policy should provide a baseline understanding of the burden of human disease to inform the evaluation of the current and future impacts of climate change and HABs on human health.Harmful algal blooms (HABs) threaten coastal ecological systems, public health, and local economies, but the complex physical, chemical, and biological processes that culminate in HABs vary by locale and are often poorly understood. Despite broad recognition that cultural eutrophication may exacerbate nearshore bloom events, the association is typically not linear and is often difficult to quantify. Off the Gulf Coast of Florida, Karenia brevis blooms initiate in the open waters of the Gulf of Mexico, and advection of cells supplies nearshore blooms. However, past work has struggled to describe the relationship between terrestrial nutrient runoff and bloom maintenance near the Gulf Coast. This study applied a novel nonlinear time series (NLTS) analytical framework to investigate whether nearshore bloom dynamics observed near Charlotte Harbor, FL were causally and systematically driven by terrestrially sourced inputs of nitrogen, phosphorus, and freshwater between 2012 and 2018. Singular spectrum analysis (SSAds.The diatom genus Pseudo-nitzschia, which has been associated with amnesic shellfish poisoning events globally, is also one of the key harmful microalga groups in Guangdong coastal waters, off the north coast of the South China Sea. buy RMC-6236 In order to explore the diversity and toxigenic characteristics, Pseudo-nitzschia isolates were established. Based on a combination of morphological and molecular features, in total 26 different Pseudo-nitzschia taxa were identified, including two new species, P. uniseriata H.C. Dong & Yang Li and P. yuensis H.C. Dong & Yang Li. Morphologically, P. uniseriata is unique by having striae mainly comprising one row of poroids, which are simple without divided hymen internally, and each poroid containing one, seldom two sectors. Pseudo-nitzschia yuensis is characterized by having striae comprising one to two rows of poroids. In biseriate striae, the poroids are polygonal and irregularly distributed, and a discontinuous row of poroids may be present in the middle. In uniseriate striae, tA content in P. cuspidata, P. fukuyoi, P. lundholmiae and P. multiseries 1.4 to 7 times, and induced pDA production in P. fraudulenta from below detection limit to 17.5 ± 1.6 fg cell-1. The highest pDA concentration, 4830.5 ± 120.3 fg cell-1, was detected in P. multiseries, a level much lower than previous reports on P. multiseries from North America and Europe. Overall, the cellular toxin levels in Pseudo-nitzschia spp. were low in Guangdong coastal isolates.Florida red tides are harmful algae blooms caused by the dinoflagellate Karenia brevis, which occur along Florida's gulf coast almost annually. In recent years Florida red tide blooms have become more common, frequent, and intense. Florida's southwest coast, from Manatee to Collier County, has experienced repeated and prolonged K. brevis blooms since 2011 with the most recent bloom in 2017 lasting 17 months and resulting in both hypoxic and anoxic events. We therefore determined the survival and level of lethargy (e.g., lack of responsiveness or reduction in behavioral reactions) of sublegal stone crabs to K. brevis and hypoxia as both singular and simultaneous stressors. Crabs were randomly assigned to one of six treatments that included 1) high concentration of toxic K. brevis (> 1 million cells L-1) maintained at normoxic levels (7.2 mg L-1 ± S.D. 0.47 dissolved oxygen), 2) moderate hypoxia (1.6 mg L-1 ± S.D. 0.42 dissolved oxygen) with no K. brevis, 3) moderate hypoxia (1.5 mg L-1 ± S.D. 0.43 dissolved oxygen) with a high concentration of K. brevis, 4) severe hypoxia with no K. brevis (0.69 mg L-1 ± S.D. 0.36 dissolved oxygen), 5) severe hypoxia (0.63 mg L-1 ± S.D. 0.40 dissolved oxygen) with a high concentration of K. brevis, and 6) a normoxic control (7.3 mg L-1 ± S.D. 0.61 dissolved oxygen) with no K. brevis. Survival and stone crab lethargy or responsiveness was monitored every 10-12 h for six days. Crabs simultaneously exposed to K. brevis and severe hypoxia exhibited a 43% decrease in survival and experienced increased lethargy within 24 h relative to the control (7% decrease in survival, no increase in lethargy). The increase in stress level and sluggish behavior during exposure to hypoxia was evident by a general lack of responsiveness or movement which indicates that nearshore populations of stone crabs are unlikely to emigrate away from such conditions suggesting that future harvests may be reduced following prolonged K. brevis blooms and hypoxic events.Mixotrophic Dinophysis species threaten human health and coastal economies through the production of toxins which cause diarrhetic shellfish poisoning (DSP) in humans. Novel blooms of Dinophysis acuminata and Dinophysis ovum have occurred in North American waters in recent decades, resulting in the closure of shellfish harvesting. Understanding the ecology of Dinophysis species and their prey is essential to predicting and mitigating the impact of blooms of these dinoflagellates. The growth response of two new isolates of Dinophysis species, one isolate of Mesodinium rubrum, and two strains of Teleaulax amphioxeia were evaluated at a range of temperature, salinity, and irradiance treatments to identify possible environmental drivers of Dinophysis blooms in the Gulf of Mexico. Results showed optimal growth of T. amphioxeia and M. rubrum at 24 °C, salinity 30 - 34, and irradiances between 300 and 400 µmol quanta m - 2s - 1. Optimal Dinophysis growth was observed at salinity 22 and temperatures between 18 and 24 °C. Mesodinium and both Dinophysis responded differently to experimental treatments, which may be due to the suitability of prey and different handling of kleptochloroplasts. Dinophysis bloom onset may be initiated by warming surface waters between winter and spring in the Gulf of Mexico. Toxin profiles for these two North American isolates were distinct; Dinophysis acuminata produced okadaic acid, dinophysistoxin-1, and pectenotoxin-2 while D. ovum produced only okadaic acid. Toxin per cell for D. ovum was two orders of magnitude greater than D. acuminata. Phylogenies based on the cox1 and cob genes did not distinguish these two Dinophysis species within the D. acuminata complex.Microcystins (MCs) are among the predominant cyanotoxins that are primarily degraded by heterotrophic bacteria in various freshwater environments, including Lake Erie, a Laurentian Great Lake. However, despite the prevalence of MCs in Lake Erie basins, our knowledge about the taxonomic diversity of local MC-degrading bacteria is largely limited. The current study obtained thirty-four MC-degrading bacterial pure isolates from Lake Erie surface water and characterized their taxonomical and phenotypic identities as well as their MC-degradation rates under different pH, temperature, availability of organic substrates and with other MC-degrading isolates. Obtained MC-degrading isolates included both Gram-positive (18 isolates of Actinobacteria and Firmicutes) and Gram-negative bacteria (16 isolates of Gamma-proteobacteria); and 7 of these isolates were motile, and 13 had the capacity to form biofilms. In general, MC-degradation rates of the isolates were impacted by temperature and pH but insensitive to the presen treatment systems.Cylindrospermopsin (CYN) is a toxic secondary metabolite produced by several freshwater species of cyanobacteria. Its high chemical stability and wide biological activity pose a series of threats for human and animal morbidity and mortality. The biggest risk of CYN exposure for human organism comes from the consumption of contaminated water, fish or seafood. Very important for effective monitoring of the occurrence of CYN in aquatic environment is accurate identification of cyanobacteria species, that are potentially able to synthesize CYN. In this review we collect data about the discovery of CYN production in cyanobacteria and present the morphological changes between all its producers. Additionally we set together the results describing the catalytic decomposition of CYN.