Hebertskipper6820

Z Iurium Wiki

We select eight greyscale images as the benchmark images for testing and compare them with the other classical and state-of-the-art algorithms. Meanwhile, the experimental metrics include the average fitness (mean), standard deviation (Std), peak signal to noise ratio (PSNR), structure similarity index (SSIM), feature similarity index (FSIM), and Wilcoxon rank-sum test, which is utilized to evaluate the quality of segmentation. Experimental results demonstrated that ESMA is superior to other algorithms and can provide higher segmentation accuracy.Driven by the need for the compression of weights in neural networks (NNs), which is especially beneficial for edge devices with a constrained resource, and by the need to utilize the simplest possible quantization model, in this paper, we study the performance of three-bit post-training uniform quantization. The goal is to put various choices of the key parameter of the quantizer in question (support region threshold) in one place and provide a detailed overview of this choice's impact on the performance of post-training quantization for the MNIST dataset. Specifically, we analyze whether it is possible to preserve the accuracy of the two NN models (MLP and CNN) to a great extent with the very simple three-bit uniform quantizer, regardless of the choice of the key parameter. Moreover, our goal is to answer the question of whether it is of the utmost importance in post-training three-bit uniform quantization, as it is in quantization, to determine the optimal support region threshold value of the quantizer to achieve some predefined accuracy of the quantized neural network (QNN). The results show that the choice of the support region threshold value of the three-bit uniform quantizer does not have such a strong impact on the accuracy of the QNNs, which is not the case with two-bit uniform post-training quantization, when applied in MLP for the same classification task. Accordingly, one can anticipate that due to this special property, the post-training quantization model in question can be greatly exploited.We perform security analysis of a passive continuous-variable quantum key distribution (CV-QKD) protocol by considering the finite-size effect. In the passive CV-QKD scheme, Alice utilizes thermal sources to passively make preparation of quantum state without Gaussian modulations. With this technique, the quantum states can be prepared precisely to match the high transmission rate. Here, both asymptotic regime and finite-size regime are considered to make a comparison. TRC051384 order In the finite-size scenario, we illustrate the passive CV-QKD protocol against collective attacks. Simulation results show that the performance of passive CV-QKD protocol in the finite-size case is more pessimistic than that achieved in the asymptotic case, which indicates that the finite-size effect has a great influence on the performance of the single-mode passive CV-QKD protocol. However, we can still obtain a reasonable performance in the finite-size regime by enhancing the average photon number of the thermal state.This article presents the author's own metaheuristic cryptanalytic attack based on the use of differential cryptanalysis (DC) methods and memetic algorithms (MA) that improve the local search process through simulated annealing (SA). The suggested attack will be verified on a set of ciphertexts generated with the well-known DES (data encryption standard) reduced to six rounds. The aim of the attack is to guess the last encryption subkey, for each of the two characteristics Ω. Knowing the last subkey, it is possible to recreate the complete encryption key and thus decrypt the cryptogram. The suggested approach makes it possible to automatically reject solutions (keys) that represent the worst fitness function, owing to which we are able to significantly reduce the attack search space. The memetic algorithm (MASA) created in such a way will be compared with other metaheuristic techniques suggested in literature, in particular, with the genetic algorithm (NGA) and the classical differential cryptanalysis attack, in terms of consumption of memory and time needed to guess the key. The article also investigated the entropy of MASA and NGA attacks.The main purpose of the study is to investigate how price fluctuations of a sovereign currency are transmitted among currencies and what network traits and currency relationships are formed in this process under the background of economic globalization. As a universal equivalent, currency with naturally owned network attributes has not been paid enough attention by the traditional exchange rate determination theories because of their overemphasis of the attribute of value measurement. Considering the network attribute of currency, the characteristics of the information flow network of exchange rate are extracted and analyzed in order to research the impact they have on each other among currencies. The information flow correlation network between currencies is researched from 2007 to 2019 based on data from 30 currencies. A transfer entropy is used to measure the nonlinear information flow between currencies, and complex network indexes such as average shortest path and aggregation coefficient are used to analternational currencies since 2015, and this trend continues even if there are trade frictions between China and the United States.Recent digitization technologies empower mHealth users to conveniently record their Ecological Momentary Assessments (EMA) through web applications, smartphones, and wearable devices. These recordings can help clinicians understand how the users' condition changes, but appropriate learning and visualization mechanisms are required for this purpose. We propose a web-based visual analytics tool, which processes clinical data as well as EMAs that were recorded through a mHealth application. The goals we pursue are (1) to predict the condition of the user in the near and the far future, while also identifying the clinical data that mostly contribute to EMA predictions, (2) to identify users with outlier EMA, and (3) to show to what extent the EMAs of a user are in line with or diverge from those users similar to him/her. We report our findings based on a pilot study on patient empowerment, involving tinnitus patients who recorded EMAs with the mHealth app TinnitusTips. To validate our method, we also derived synthetic data from the same pilot study. Based on this setting, results for different use cases are reported.We consider the problem of encoding a deterministic source sequence (i.e., individual sequence) for the degraded wiretap channel by means of an encoder and decoder that can both be implemented as finite-state machines. Our first main result is a necessary condition for both reliable and secure transmission in terms of the given source sequence, the bandwidth expansion factor, the secrecy capacity, the number of states of the encoder and the number of states of the decoder. Equivalently, this necessary condition can be presented as a converse bound (i.e., a lower bound) on the smallest achievable bandwidth expansion factor. The bound is asymptotically achievable by Lempel-Ziv compression followed by good channel coding for the wiretap channel. Given that the lower bound is saturated, we also derive a lower bound on the minimum necessary rate of purely random bits needed for local randomness at the encoder in order to meet the security constraint. This bound too is achieved by the same achievability scheme. Finally, we extend the main results to the case where the legitimate decoder has access to a side information sequence, which is another individual sequence that may be related to the source sequence, and a noisy version of the side information sequence leaks to the wiretapper.Wars, terrorist attacks, as well as natural catastrophes typically result in a large number of casualties, whose distributions have been shown to belong to the class of Pareto's inverse power laws (IPLs). The number of deaths resulting from terrorist attacks are herein fit by a double Pareto probability density function (PDF). We use the fractional probability calculus to frame our arguments and to parameterize a hypothetical control process to temper a Lévy process through a collective-induced potential. Thus, the PDF is shown to be a consequence of the complexity of the underlying social network. The analytic steady-state solution to the fractional Fokker-Planck equation (FFPE) is fit to a forty-year fatal quarrel (FQ) dataset.Significant progress has been made in generating counterfeit images and videos. Forged videos generated by deepfaking have been widely spread and have caused severe societal impacts, which stir up public concern about automatic deepfake detection technology. Recently, many deepfake detection methods based on forged features have been proposed. Among the popular forged features, textural features are widely used. However, most of the current texture-based detection methods extract textures directly from RGB images, ignoring the mature spectral analysis methods. Therefore, this research proposes a deepfake detection network fusing RGB features and textural information extracted by neural networks and signal processing methods, namely, MFF-Net. Specifically, it consists of four key components (1) a feature extraction module to further extract textural and frequency information using the Gabor convolution and residual attention blocks; (2) a texture enhancement module to zoom into the subtle textural features in shallow layers; (3) an attention module to force the classifier to focus on the forged part; (4) two instances of feature fusion to firstly fuse textural features from the shallow RGB branch and feature extraction module and then to fuse the textural features and semantic information. Moreover, we further introduce a new diversity loss to force the feature extraction module to learn features of different scales and directions. The experimental results show that MFF-Net has excellent generalization and has achieved state-of-the-art performance on various deepfake datasets.In the continuous variable measurement-device-independent quantum key distribution (CV-MDI-QKD) protocol, both Alice and Bob send quantum states to an untrusted third party, Charlie, for detection through the quantum channel. In this paper, we mainly study the performance of the CV-MDI-QKD system using the noiseless linear amplifier (NLA). The NLA is added to the output of the detector at Charlie's side. The research results show that NLA can increase the communication distance and secret key rate of the CV-MDI-QKD protocol. Moreover, we find that the more powerful the improvement of the performance with the longer gain of NLA and the optimum gain is given under different conditions.Thanks to the tractability of their likelihood, several deep generative models show promise for seemingly straightforward but important applications like anomaly detection, uncertainty estimation, and active learning. However, the likelihood values empirically attributed to anomalies conflict with the expectations these proposed applications suggest. In this paper, we take a closer look at the behavior of distribution densities through the lens of reparametrization and show that these quantities carry less meaningful information than previously thought, beyond estimation issues or the curse of dimensionality. We conclude that the use of these likelihoods for anomaly detection relies on strong and implicit hypotheses, and highlight the necessity of explicitly formulating these assumptions for reliable anomaly detection.

Autoři článku: Hebertskipper6820 (Hood Ross)