Hebertcarver1545

Z Iurium Wiki

Structural engineering represents a major trend in the field of two-dimensional (2D) materials regarding microscopic interfacial electric/dielectric properties and macroscopic device strategies. 2D molybdenum disulfide (MoS2) with semiconductive features and lamellar architecture has been widely applied in the microwave absorption (MA) field. However, due to its limitations of weak dielectric loss capacity and poor intrinsic mechanical property, MoS2-based MA devices are a considerable design challenge for practical applications with the peculiarities of light weight, high absorption performance, flexibility, and compressibility. Herein, 2D MoS2 was riveted on carbonized melamine foam (CMF) templated from a commercial foam skeleton, which was cladded with the conductive polymer polypyrrole (PPy). The as-prepared PPy@MoS2/CMF was integrated to simultaneously achieve an excellent MA performance including a maximum reflection loss (RL) value of -45.40 dB and a wide absorption bandwidth of 3.8 GHz, together with mechanical practicability including a high compression ratio of over 45.6% in volume and a bending angle of over 43.2°. This excellent MA performance is attributed to the synergetic effect from its sandwiched multi-layered skeleton, consisting of a conductive/semiconductive/conductive ternary conductive network, and multiple polarizations from the 2D MoS2 interlayer. this website Our strategy sheds novel insight into the construction of advanced carbon-supported composites and 2D materials for use in devices, which can be further extended to energy storage and conversion applications.Megacities are metropolitan areas with populations over 10 million, and many of them are facing significant global environmental challenges such as air pollution. Intense economic and human activities in megacities result in air pollution emissions, inducing high levels of air pollutants in the atmosphere that harm human health, cause regional haze and acid deposition, damage crops, influence regional air quality, and contribute to climate change. Since the Great London Smog and the first recognized episode of Los Angeles photochemical smog seventy years ago, substantial progress has been achieved in improving the scientific understanding of air pollution and in developing emissions reduction technologies and control measures. However, much remains to be understood about the complex processes of atmospheric transport and reaction mechanisms; the formation and evolution of secondary particles, especially those containing organic species; and the influence of emerging emissions sources and changing climate on air quality and health. Molina (DOI ) has provided an excellent overview of the sources of emissions in megacities, atmospheric physicochemical processes, air quality trends and management, and the impacts on health and climate for the introductory lecture of this Faraday Discussion.Bio-inspired electronic devices have significant potential for use in memory devices of the future, including in the context of neuromorphic computing and architecture. This study proposes a transparent heterojunction device for the artificial human visual cortex. Owing to their high transparency, such devices directly react to incoming light to mimic neurological and biological processes in the nervous system. Metal-oxide materials are applied to form a transparent heterojunction (n-type ZnO/p-type NiO) in the proposed device that also provides the photovoltaic function to realize the optic nerve system. The device also exhibits nociceptive features. Its transparent photovoltaic feature endows it with self-powered operation that ensures long-term reliability without needing to replace the power system. This self-powered and highly transparent visual electronic device can provide a route for sustainable applications of neuromorphic computing, including artificial eyes.Efficient conversion of light alkanes is of essential significance for enhancing the utilization efficiency of resources and exploring the activation and evolution regulation of C-C and C-H bonds in stable molecules. The processes are often executed with catalysts under harsh conditions. The olefin yield and metal stability have been the long-standing concerns. Herein, we report a facile strategy of constructing a bifunctional Pt/HZSM-5-based catalyst by two-step atomic layer deposition (ALD) to achieve a high light olefin formation rate of 0.48 mmol gcat-1·min-1 in the catalytic cracking of n-butane at 600 °C, which is ∼2.2 times higher than that of the conventional Pt/HZSM-5 catalyst (0.22 mmol gcat-1·min-1). Moreover, the bifunctional Pt/HZSM-5-based catalyst exhibited outstanding recyclability and excellent metal stability against sintering in comparison with conventional Pt/HZSM-5. Detailed microscopic and spectroscopic characterization studies demonstrate that the metal oxide (TiO2 or Al2O3) coating not only prevents the metal from high-temperature sintering, but also regulates the proportion of coordinately unsaturated platinum surface atoms. Theoretical calculations further confirm the preference of nucleation of TiO2 or Al2O3 on coordinately unsaturated platinum sites, which in turn modulates the bifunctional dehydrogenation-cracking pathway to improve the olefin formation rate.To investigate the effect of different halogen substituents and leaving groups and the flexibility of ligands on the anticancer activity of copper complexes, sixteen copper(ii) complexes with eight different tridentate Schiff-base ligands containing pyridine and 3,5-halogen-substituted phenol moieties were synthesized and characterized by spectroscopic methods. Four of these complexes were also characterized by X-ray crystallography. The cytotoxicity of the complexes was determined in three different tumor cell lines (i.e. the A2780 ovarian, HCT116 colorectal and MCF7 breast cancer cell line) and in a normal primary fibroblast cell line. Complexes were demonstrated to induce a higher loss of cell viability in the ovarian carcinoma cell line (A2780) with respect to the other two tumor cell lines, and therefore the biological mechanisms underlying this loss of viability were further investigated. Complexes with ligand L1 (containing a 2-pycolylamine-type motif) were more cytotoxic than complexes with L2 (containing a 2-(2-pyridyl)ethylamine-type motif).

Autoři článku: Hebertcarver1545 (Ahmad Arildsen)