Hartvigsenkaufman5455

Z Iurium Wiki

systems. The proposed attack mitigation algorithms, which were developed based on artificial intelligence, outperformed the few existing systems. The goal of this research is to enable the detection and effective mitigation of EDoS attacks.Durability is an essential aspect of the lifetime performance of concrete components. The adequate surface quality and thus the service life of concrete can be achieved, among other things, by appropriate curing during hydration. To measure and control the curing quality, appropriate procedures are required. Gas permeability allows conclusions to be drawn about the porosity of concrete, which has a significant impact on durability. In this contribution, the effect of different curing methods on gas permeability is presented with the help of laboratory and on-site tests, showing that inadequate curing leads to increased permeability in the near-surface area of concrete. The measurement results of concrete samples and components with the same composition but varying curing treatment are compared and evaluated. Influences such as concrete composition and environmental factors on the quality of concrete are observed, and recommendations are made for a reliable assessment of the surface quality as a result of the investigated curing measures.Heart Rate Variability (HRV) has become an important risk assessment tool when diagnosing illnesses related to heart health. HRV is typically measured with an electrocardiogram; however, there are multiple studies that use Photoplethysmography (PPG) instead. Measuring HRV with video is beneficial as a non-invasive, hands-free alternative and represents a more accessible approach. We developed a methodology to extract HRV from video based on face detection algorithms and color augmentation. We applied this methodology to 45 samples. Signals obtained from PPG and video recorded an average mean error of less than 1 bpm when measuring the heart rate of all subjects. Furthermore, utilizing PPG and video, we computed 61 variables related to HRV. We compared each of them with three correlation metrics (i.e., Kendall, Pearson, and Spearman), adjusting them for multiple comparisons with the Benjamini-Hochberg method to control the false discovery rate and to retrieve the q-value when considering statistical significance lower than 0.5. Using these methods, we found significant correlations for 38 variables (e.g., Heart Rate, 0.991; Mean NN Interval, 0.990; and NN Interval Count, 0.955) using time-domain, frequency-domain, and non-linear methods.The aim of this study is to evaluate the performance of the Radialis organ-targeted positron emission tomography (PET) Camera with standardized tests and through assessment of clinical-imaging results. Barasertib supplier Sensitivity, count-rate performance, and spatial resolution were evaluated according to the National Electrical Manufacturers Association (NEMA) NU-4 standards, with necessary modifications to accommodate the planar detector design. The detectability of small objects was shown with micro hotspot phantom images. The clinical performance of the camera was also demonstrated through breast cancer images acquired with varying injected doses of 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (18F-FDG) and qualitatively compared with sample digital full-field mammography, magnetic resonance imaging (MRI), and whole-body (WB) PET images. Micro hotspot phantom sources were visualized down to 1.35 mm-diameter rods. Spatial resolution was calculated to be 2.3 ± 0.1 mm for the in-plane resolution and 6.8 ± 0.1 mm for the cross-plane resolution using maximum likelihood expectation maximization (MLEM) reconstruction. The system peak noise equivalent count rate was 17.8 kcps at a 18F-FDG concentration of 10.5 kBq/mL. System scatter fraction was 24%. The overall efficiency at the peak noise equivalent count rate was 5400 cps/MBq. The maximum axial sensitivity achieved was 3.5%, with an average system sensitivity of 2.4%. Selected results from clinical trials demonstrate capability of imaging lesions at the chest wall and identifying false-negative X-ray findings and false-positive MRI findings, even at up to a 10-fold dose reduction in comparison with standard 18F-FDG doses (i.e., at 37 MBq or 1 mCi). The evaluation of the organ-targeted Radialis PET Camera indicates that it is a promising technology for high-image-quality, low-dose PET imaging. High-efficiency radiotracer detection also opens an opportunity to reduce administered doses of radiopharmaceuticals and, therefore, patient exposure to radiation.Product warranty seals or stickers are criteria for after-sale warranty services. The unauthorized removal or modification of a seal will void the warranty. So far, there is no detection method to confirm the warranty, other than the visual inspection of the deformation of the seal. Hence, a system to detect, read, and record the 'warranty' seal deformation is presented in this paper. A flexible piezoelectric sensor was used to determine the mechanical impacts of the seal. Three major impacts are discussed and evaluated in this paper-partial removal, complete removal, and drop deformations of the seal. These impacts were compared with the ambient responses to distinguish the conditions. All three impact cases show distinct characteristics in terms of sensor values, pulses, and pulse widths. For partial removal and complete removal of the seal, both cases exhibited maximum sensor values but differed in pulse and pulse width. A partially removed seal experienced the maximum number of pulses while complete removal experienced the maximum pulse width. However, if the seal experienced a drop impact, it showed lower sensor values, with the lowest pulse and pulse width. Hence, an algorithm was applied to generalize the conditions and decisions of warranty violations.This article discusses the use of a handheld electronic nose to obtain information on the presence of some aromatic defects in natural cork stoppers, such as haloanisoles, alkylmethoxypyrazines, and ketones. Typical concentrations of these compounds (from 5 to 120 ng in the cork samples) have been measured. Two electronic nose prototypes have been developed as an instrumentation system comprise of eight commercial gas sensors to perform two sets of experiments. In the first experiment, a quantitative approach was used whist in the second experiment a qualitative one was used. Machine learning algorithms such as k-nearest neighbors and artificial neural networks have been used in order to test the performance of the system to detect cork defects. The use of this system tries to improve the current aromatic defect detection process in the cork stopper industry, which is done by gas chromatography or human test panels. We found this electronic nose to have near 100 % accuracy in the detection of these defects.In this study, we developed a range of motion sensing system (ROMSS) to simulate the function of the elbow joint, with errors less than 0.76 degrees and 0.87 degrees in static and dynamic verification by the swinging and angle recognition modules, respectively. In the simulation process, the ɣ correlation coefficient of the Pearson difference between the ROMSS and the universal goniometer was 0.90, the standard deviations of the general goniometer measurements were between ±2 degrees and ±2.6 degrees, and the standard deviations between the ROMSS measurements were between ±0.5 degrees and ±1.6 degrees. With the ROMSS, a cloud database was also established; the data measured by the sensor could be uploaded to the cloud database in real-time to provide timely patient information for healthcare professionals. We also developed a mobile app for smartphones to enable patients and healthcare providers to easily trace the data in real-time. Historical data sets with joint activity angles could be retrieved to observe the progress or effectiveness of disease recovery so the quality of care could be properly assessed and maintained.Aircraft maintenance plays a key role in the safety of air transport. One of its most significant procedures is the visual inspection of the aircraft skin for defects. This is mainly carried out manually and involves a high skilled human walking around the aircraft. It is very time consuming, costly, stressful and the outcome heavily depends on the skills of the inspector. In this paper, we propose a two-step process for automating the defect recognition and classification from visual images. The visual inspection can be carried out with the use of an unmanned aerial vehicle (UAV) carrying an image sensor to fully automate the procedure and eliminate any human error. With our proposed method in the first step, we perform the crucial part of recognizing the defect. If a defect is found, the image is fed to an ensemble of classifiers for identifying the type. The classifiers are a combination of different pretrained convolution neural network (CNN) models, which we retrained to fit our problem. For achieving our goal, we created our own dataset with defect images captured from aircrafts during inspection in TUI's maintenance hangar. The images were preprocessed and used to train different pretrained CNNs with the use of transfer learning. We performed an initial training of 40 different CNN architectures to choose the ones that best fitted our dataset. Then, we chose the best four for fine tuning and further testing. For the first step of defect recognition, the DenseNet201 CNN architecture performed better, with an overall accuracy of 81.82%. For the second step for the defect classification, an ensemble of different CNN models was used. The results show that even with a very small dataset, we can reach an accuracy of around 82% in the defect recognition and even 100% for the classification of the categories of missing or damaged exterior paint and primer and dents.Cold storage is deemed one of the main elements in food safety management to maintain food quality. The temperature, relative humidity (RH), and air quality in cold storage rooms (CSRs) should be carefully controlled to ensure food quality and safety during cold storage. In addition, the components of CSR are exposed to risks caused by the electric current, high temperature surrounding the compressor of the condensing unit, snow and ice accumulation on the evaporator coils, and refrigerant gas leakage. These parameters affect the stored product quality, and the real-time sending of warnings is very important for early preemptive actionability against the risks that may cause damage to the components of the cold storage rooms. The IoT-based control (IoT-BC) with multipurpose sensors in food technologies presents solutions for postharvest quality management of fruits during cold storage. Therefore, this study aimed to design and evaluate a IoT-BC system to remotely control, risk alert, and monitor the microclimuit quality, this modification seems quite suitable for remotely managing cold storage facilities.This paper introduces a novel methodology to optimize the design of a ratiometric rotary inductive position sensor (IPS) fabricated in printed circuit board (PCB) technology. The optimization aims at reducing the linearity error of the sensor and amplitude mismatch between the voltages on the two receiving (RX) coils. Distinct from other optimization techniques proposed in the literature, the sensor footprint and the target geometry are considered as a non-modifiable input. This is motivated by the fact that, for sensor replacement purposes, the target has to fit a predefined space. For this reason, the original optimization technique proposed in this paper modifies the shape of the RX coils to reproduce theoretical coil voltages as much as possible. The optimized RX shape was obtained by means of a non-linear least-square solver, whereas the electromagnetic simulation of the sensor is performed with an original surface integral method, which are orders of magnitude faster than commercial software based on finite elements.

Autoři článku: Hartvigsenkaufman5455 (Humphries Hays)