Hallweaver8078
Absorbance and infra red spectra further validated the inhibition of staphyloxanthin by thymol. In addition, thymol treatment significantly reduced the resistance of MRSA to ROS and neutrophil-based killing as exhibited by oxidant susceptibility assays and ex vivo innate immune clearance assay using human whole blood and neutrophils. Further, reduction in staphyloxanthin by thymol treatment increased the membrane fluidity and made MRSA cells more susceptible to membrane targeting antibiotic polymyxin B. Especially, thymol was found to be non-cytotoxic to human peripheral blood mononuclear cells. Our study validated the antivirulence potential of thymol against MRSA by inhibiting staphyloxanthin and suggests the prospective therapeutic role of thymol to combat MRSA infections.Psoriasis is one of the most common chronic inflammatory diseases that is characterized by well-defined erythematous plaques, with typical histopathological findings of lymphocytic infiltration and epidermal hyperplasia. Topical treatments of psoriasis are either associated with limited response or with side effects. Up to date, topicals targeting neuroimmune axis in psoriasis or psoriasiform dermatitis have not been explored. Here, we investigated whether percutaneous delivery of capsaicin could attenuate the pathological change of psoriasiform inflammation. Imiquimod-induced psoriasis-like murine model was used to evaluate therapeutic effects from topical application of capsaicin. An additional model of psoriasiform dermatitis induced by direct IL-23 injection was used to identify the level of action from capsaicin in this neuroimmune axis. Cutaneous inflammation was assessed by erythema level and ear thickness change. Key cytokines, infiltrating cells in the skin, and draining lymph node cells were investigated. The results showed that capsaicin administration obstructed the activation of IL-23/IL-17 pathway induced by imiquimod, presenting with significantly reduced psoriasiform dermatitis both in gross appearance and microscopic features. Tissue gene expression of psoriatic core cytokines induced by imiquimod (including IL-23, IL-17A, IL-22, TNF-α, and IL-6) were greatly decreased by capsaicin application. This protective effect from capsaicin could be hampered by direct intradermal injection of IL-23. CONCLUSION Epicutaneous delivery of capsaicin on imiquimod-treated murine skin could significantly decrease expression of multiple inflammatory cytokines and the severity of prototypic change of psoriasiform inflammation. The beneficial effect imposed by capsaicin reinforces the neuroimmune contribution towards psoriasiform inflammation and provides a potential non-steroidal therapeutic alternative for topical treatment of psoriasiform dermatitis.The immune system is a dynamic network of cells and cytokines are the major mediators of immune responses which combat pathogens. Based on the cytokine production, effector T cells differentiate into subsets known as Th1, Th2, Th17, or Treg. This system serves as a barrier to intracellular pathogens, bacterial infections and stimulates the production of reactive oxygen species (ROS), reactive nitrogen intermediates, and nitric oxide, which diffuses across membranes and engulfs intracellular pathogens. Oxidative stress occurs when ROS, reactive nitrogen species (RNS) production, and antioxidant defences become imbalanced. Oxidative stress generated by infected cells produces a substantial amount of free radicals which enables the killing of intracellular pathogens. Intracellular pathogens are exposed to endogenous ROS as part of normal aerobic respiration, also exogenous ROS and RNS are generated by the host immune system in response to infection. Nanoparticles which are designed for drug delivery are capable of trapping the desired drug in the particles which protect the drug from enzymatic degradation in a biological system. The subcellular size of nanoparticles enables higher intracellular uptake of the drug which results in the reduction of the concentration of free drugs reducing their toxic effect. Research on the modulation of immune response and oxidative stress using nanoparticles used to encapsulate drugs has yet to be explored fully. In this review, we illustrate the immune activation and generation of oxidative stress properties which are mediated by nanoparticle encapsulated drug delivery systems which can make the therapy more effective in case of diseases caused by intracellular pathogens.Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, of which the occurrence and development involve a variety of pathophysiological processes, such as liver fibrosis, hepatocellular malignant proliferation, metastasis, and tumor angiogenesis. Some important cytokines, such as TGF-β, PI3K, protein kinase B (Akt), VEGF and NF-κB, can regulate the growth, proliferation, diffusion, metastasis, and apoptosis of HCC cells by acting on the corresponding signaling pathways. Besides, many studies have shown that the formation of HCC is closely related to the main components of renin-angiotensin system (RAS), such as Ang II, ACE, ACE2, MasR, AT1R, and AT2R. Chroman 1 inhibitor Therefore, this review focused on liver fibrosis, HCC cell proliferation, metastasis, tumor angiogenesis, and corresponding protective measures. ACE-Ang II-AT1 axis and ACE2-Ang-(1-7)-MasR axis were taken as the main lines to introduce the mechanism of RAS in the occurrence and development of HCC, so as to provide references for future clinical work and scientific research.Naodesheng (NDS) tablets have been widely used to treat ischemic stroke clinically. NDS relieves neurological function impairment and improve learning and memory in rats with focal cerebral ischemia, suggesting that NDS has potential for Alzheimer's disease (AD) treatment. However, there are no studies about its effective material basis and possible mechanisms. In this study, a systems pharmacology method was applied to reveal the potential molecular mechanism of NDS in the treatment of AD. First, we obtained 360 NDS candidate constituents through ADMET filter analysis. Then, 115 AD-related targets were uncovered by pharmacophore model prediction via mapping the predicted targets against AD-related proteins. In addition, compound-target and target-function networks were established to suggest potential synergistic effects among the candidate constituents. Furthermore, potential targets regulated by NDS were integrated into AD-related pathways to demonstrate the therapeutic mechanism of NDS in AD treatment. Subsequently, a validation experiment proved the therapeutic effect of NDS on cognitive dysfunction in rats with intracerebroventricular injection of Aβ. We found that administration of NDS tablets regulates β-amyloid metabolism, improves synaptic plasticity, inhibits neuroinflammation and improves learning and memory function. In conclusion, this is the first study to provide a comprehensive systems pharmacology approach to elucidate the potential therapeutic mechanism of NDS tablets for AD treatment. We suggest that the protective effects of NDS in neurodegenerative conditions could be partly attributed to its role in improving synaptic plasticity and inhibiting neuroinflammation via NF-κB signaling pathway inhibition and cAMP/PKA/CREB signaling pathway activation.
Hypertension is a leading risk factor for developing kidney disease. Current single-target antihypertensive drugs are not effective for hypertensive nephropathy, in part due to its less understood mechanism of pathogenesis. We recently showed that QiShenYiQi (QSYQ), a component-based cardiovascular Chinese medicine, is also effective for ischemic stroke. Given the important role of the brain-heart-kidney axis in blood pressure control, we hypothesized that QSYQ may contribute to blood pressure regulation and kidney protection in Dahl salt-sensitive hypertensive rats.
The therapeutic effects of QSYQ on blood pressure and kidney injury in Dahl salt-sensitive rats fed with high salt for 9 weeks were evaluated by tail-cuff blood pressure monitoring, renal histopathological examination and biochemical indicators in urine and serum. RNA-seq was conducted to identify QSYQ regulated genes in hypertensive kidney, and RT-qPCR, immunohistochemistry, and Western blotting analysis were performed to verify the transcrilowered blood pressure, but also alleviated renal damage via reducing the expression of ADRA1D and increasing the expression of SIK1 in the kidney of Dahl salt-sensitive hypertensive rats.Rheumatoid arthritis (RA) is a systemic autoimmune disease manifested by chronic joint inflammation leading to severe disability and premature mortality. With a global prevalence of about 0.3%-1% RA is 3-5 times more prevalent in women than in men. There is no known cure for RA; the ultimate goal for treatment of RA is to provide symptomatic relief. The treatment regimen for RA involves frequent drug administration and high doses of NSAIDs such as indomethacin, diclofenac, ibuprofen, celecoxib, etorcoxib. These potent drugs often have off target effects which drastically decreases patient compliance. Moreover, conventional non-steroidal anti-inflammatory have many formulation challenges like low solubility and permeability, poor bioavailability, degradation by gastrointestinal enzymes, food interactions and toxicity. To overcome these barriers, researchers have turned to topical route of drug administration, which has superior patience compliance and they also bypass the first past effect experienced with conventional oral administration. Furthermore, to enhance the permeation of drug through the layers of the skin and reach the site of inflammation, nanosized carriers have been designed such as liposomes, nanoemulsions, niosomes, ethosomes, solid lipid nanoparticles and transferosomes. These drug delivery systems are non-toxic and have high drug encapsulation efficiency and they also provide sustained release of drug. This review discusses the effect of formulation composition on the physiochemical properties of these nanocarriers in terms of particle size, surface charge, drug entrapment and also drug release profile thus providing a landscape of topically used nanoformulations for symptomatic treatment of RA.The efficiency of cholesterol efflux from cells promoted by high-density lipoproteins (HDLs) depends on HDL concentration and functional properties. The term "dysfunctional HDL" describes HDLs with impaired protective properties. Cholesterol efflux capacity (CEC) of HDL is reduced in patients with atherosclerosis, but the exact mechanisms underlying this impairment are not well characterized. Enriching HDLs with phospholipids (PLs) improves CEC. Herein, we assessed the potential of PL nanoparticles in improving HDL functionality. We lipidated HDL subfractions by incubating with PL nanoparticles containing soybean polyunsaturated phosphatidylcholine. Incubating blood plasma with PL nanoparticles resulted in the dose-dependent lipidation of all HDL subfractions. Changes in apolipoprotein A1 (apoA-1) and PL concentrations were the most prominent in the HDL2 fraction. Concentrations of PL in the HDL3 fraction and the fraction with a density > 1.21 g/mL increased by 30-50%, whereas apoA-1 levels decreased. We hypothesized that PL nanoparticles may cause HDL remodeling that can improve their functions.