Guzmanclausen3472

Z Iurium Wiki

The fastest advance of the wetting front takes place during the earliest times of infiltration ( less then 2 h), with plausible propagation velocities and infiltration rates higher than 1000 m∙d-1 and 2 m3∙s-1. As time progresses, the propagation velocity and infiltration rate decrease as a consequence of the hydraulic gradient attenuation between the gallery and the aquifer. Therefore, stormwater infiltration is a highly transient process in which a sizing underestimation of 100% may be committed if unsaturated conditions or geological configuration are neglected.Vegetation dynamics are sensitive to climate change. Wind is an important climate factor that can affect carbon fluxes by altering carbon uptake and emission rates; however, the impact of wind has not been fully considered in previous studies; therefore, exploring the characteristics of vegetation responses to wind speed is crucial to sustainable natural resource utilization and ecological restoration. In this study, the global leaf area index (LAI) from 1984 to 2013 was used to investigate the vegetation spatial heterogeneities, change processes, and relative contributions of climate change. The differences in vegetation responses to climate factors, such as precipitation (PRE), temperature (TEM), and wind speed (WD), were compared by considering the effects of wind. The results revealed that (1) the global vegetation (86.24%) exhibited a greening trend, among which evergreen broad-leaved forests (0.0052 a-1) changed the most. (2) The wind speed explained 31.54% of the vegetation variations, which is higher than the contribution of other factors. (3) Reduction of wind speed had a positive impact on vegetation changes. The contribution of climate to vegetation growth increased by 8.14% when considering the effects wind speed, particularly in India and South America. Wind speed effects were essential for enhancing the vegetation dynamics assessment and improving the prediction accuracy of the model.Nowadays the agrifood system requires major transformations aimed at promoting sustainability, reducing waste and stimulating a change toward healthy sustainable diets. The scientific literature on the transition to sustainable food models continues to develop rapidly and there is an urgent need to systematize its knowledge structure and thus make future research more vigorous. Recently, several studies have focused on certain aspects of supply chain, such as traceability or decision-making frameworks, but a systematic review of the role of sustainability within the agrifood supply has never been carried out. Through a bibliometric analysis combined with network and content analyses, the present study is aimed at identifying homogeneous areas in the field of agrifood supply chains, investigating the role of innovation technology in the transition to sustainability. The bibliometric results showed that sustainable agrifood supply chains are experiencing an evolving positive trend and represent a challenging research topic which is capturing the attention of scholars. From the network and overlay visualization of keyword co-occurrences four different research clusters were identified and the blockchain emerged as central topic in the field of food security and safety. The content analysis highlighted greater attention to the environmental pillar, compared to the economic and social pillars of the sustainability paradigm. A lack of studies was also observed on the post-consumption phase of the agrifood supply chain, which could represent a research gap to be fulfilled in the light of circular economy.Global warming is causing the increase in intensity and frequency of heatwaves, which are often associated with mass mortality events of marine organisms from shallow and mesophotic rocky habitats, including gorgonians and other sessile organisms. We investigated the microbiome responses of the gorgonians Paramuricea clavata, Eunicella cavolini, and the red coral Corallium rubrum to the episodic temperature anomalies detected in the North Western Mediterranean, during August 2011. Although the investigated corals showed no signs of visible necrosis, the abundance of associated Bacteria and Archaea increased with increasing seawater temperature, suggesting their temperature-dependent proliferation. Coral microbiomes were highly sensitive to thermal anomaly amplitude and exhibited increased bacterial diversity to greater thermal shifts. This effect was explained by the decline of dominant bacterial members and the increase of new, rare and opportunistic taxa, including pathogens, revealing a direct effect of heatwave-induced alteration of the microbiomes and not a secondary consequence of coral necrosis.Urban biowaste is the organic fraction of municipal solid waste (MSW) and is a predominant waste type in low- and middle-income countries. Urban biowaste is the main cause of pollution and produces odor and leachate, and it could also serve as a source of energy and nutrient elements. Therefore, urban biowaste management should actuate minimal pollution, maximized resource utilization, and economic feasibility, which makes it a multi-objective problem. With increasing requirements for the classified management of MSW, the complexity of urban biowaste management is increasing, and it is necessary to consider the synergy mechanism between different wastes and technologies from a systematic perspective. We constructed urban biowaste management integrated model (UBMIM) to support urban biowaste management system design and policy formation. Firstly, a dynamic quantitative simulation of the numerical matching and influence conduction was conducted based on technology system synergy mechanism. Secondly, a multi-objective evaluation of the technology system was conducted based on material flow analysis, life cycle assessment, and project economic benefit assessment. On this basis, a multi-objective optimization algorithm was used for technology selection under high-dimensional objectives, and the long-term risks were identified and policy recommendations were made based on an uncertainty analysis algorithm. As a case study for the application research of the model, Suzhou, China, was selected, and integrated technology solutions and policy suggestions were provided for 2020 and 2025. The optimized solution can improve the system's efficiency of energy-saving and emission reduction by 14.5%-400.9% while reducing operating costs and new investments.Wastewater surveillance is a promising tool for population-level monitoring of the spread of infectious diseases, such as the coronavirus disease 2019 (COVID-19). Different from clinical specimens, viruses in community-scale wastewater samples need to be concentrated before detection because viral RNA is highly diluted. The present study evaluated eleven different virus concentration methods for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater. First, eight concentration methods of different principles were compared using spiked wastewater at a starting volume of 30 mL. Ultracentrifugation was the most effective method with a viral recovery efficiency of 25 ± 6%. The second-best option, AlCl3 precipitation method, yielded a lower recovery efficiency, only approximately half that of the ultracentrifugation method. Second, the potential of increasing method sensitivity was explored using three concentration methods starting with a larger volume of 1000 mL. Although ultracentrifugation using a large volume outperformed the other two large-volume methods, it only yielded a comparable method sensitivity as the ultracentrifugation using a small volume (30 mL). Thus, ultracentrifugation using less volume of wastewater is more preferable considering the sample processing throughput. Third, a comparison of two viral RNA extraction methods showed that the lysis-buffer-based extraction method resulted in higher viral recovery efficiencies, with cycle threshold (Ct) values 0.9-4.2 lower than those obtained for the acid-guanidinium-phenol-based method using spiked samples. These results were further confirmed by using positive wastewater samples concentrated by ultracentrifugation and extracted separately by the two viral RNA extraction methods. In summary, concentration using ultracentrifugation followed by the lysis buffer-based extraction method enables sensitive and robust detection of SARS-CoV-2 for wastewater surveillance.Given environmental or hydrological functions influenced by changing river networks in the development of rapid urbanization, a clear understanding of the relationships between comprehensive urbanization (CUB) and river network characteristics (RNC), storage capacity (RSC), and regulation capacity (RRC) is urgently needed. In the rapidly urbanized Tai Lake Plain (TLP), China, various methods and multisource data were integrated to estimate the dynamics of RNC, RSC, and RRC as well as their interactions with urbanization. The bivariate Moran's I methods were applied to detect and visualize the spatial dependency of RNC, RSC, or RRC on urbanization. Geographically weighted regression (GWR) model was set up to characterize spatial heterogeneity of urbanization influences on RNC, RSC and RRC. Our results indicated that RNC, RSC and RRC variables each showed an overall decreasing trend across space from 1960s to 2010s, particularly in those of tributary rivers. RNC, RSC, or RRC had globally negative correlations with CUB, respectively, but looking at local scale the spatial correlations between each pair were categorized as four types high-high, high-low, low-low, and low-high. GWR was identified to accurately predict the response of most RNC, RSC, or RRC variables to CUB (R2 0.6-0.8). The predictive ability of GWR was spatially non-stationary. The obtained relationships presented different directions and strength in space. All variables except for the water surface ratio (Wp) were more positively affected by CUB in the middle eastern parts of TLP. Drainage density, RSC and RRC variables were more negatively influenced by CUB in the northeast compared to other parts. The quantitative results of spatial relationships between urbanization and RNC, RSC or RRC can provide location-specific guidance for river environment protection and regional flood risk management.We systematically reviewed the existing evidence (until end of November 2021) on the association between long-term exposure to greenspace and behavioral problems in children according to the PRISMA 2020. The review finally reached 29 relevant studies of which, 17 were cross-sectional, 11 were cohort, and one was a case-control. Most of the studies were conducted in Europe (n = 14), followed by the USA (n = 8), and mainly (n = 21) from 2015 onwards. The overall quality of the studies in terms of risk of bias was "fair" (mean quality score = 5.4 out of 9) according to the Newcastle-Ottawa Scale. Thirteen studies (45%) had good or very good quality in terms of risk of bias. The strength and difficulty questionnaire was the most common outcome assessment instrument. Exposure to the greenspace in the reviewed studies was characterized based on different indices (availability, accessibility, and quality), mostly at residential address locations. Association of exposure to different types of greenspace were reported for nine different behavioral outcomes including total behavioral difficulties (n = 16), attention deficit hyperactivity disorder (ADHD) symptoms and severity (n = 15), ADHD diagnosis (n = 10), conduct problems (n = 10), prosocial behavior (n = 10), emotional symptoms (n = 8), peer-relationship problems (n = 8), externalizing disorders (n = 6), and internalizing disorders (n = 5).

Autoři článku: Guzmanclausen3472 (Stewart Frisk)