Guptamalling2628
When waves are incident from a high-index medium to a low one, total reflection occurs commonly for the incidence beyond the critical angle. However, this common sense is broken by a purely imaginary metamaterial (PIM), which also supports a real refraction index yet with pure loss and gain elements in their permittivity and permeability. We find that even beyond the critical angle of a lower-index PIM slab, some extraordinary wave modes including laser, anti-laser, perfect attenuator and perfect amplifier can appear. The general conditions of these wave modes are theoretically given out and the underlying mechanisms are revealed. Also, we study the influence of incident polarizations, geometric thickness and the parameters of the PIM slab on these extraordinary wave modes, with more wave propagation behaviors discovered.Pulsed Lidar can obtain rich target information in one pulse, but the echo pulse signal is extremely susceptible to low laser transmitting power and complex target environments, resulting in an amplitude that is too low, which affects detection efficiency and ranging accuracy. In this paper, a variational modal decomposition based on gray wolf optimizer (VMD-GWO) and an empirical mode decomposition (EMD) parallel for denoising and signal enhancement in pulse Lidar is proposed and demonstrated completely. First, the adaptive strategy EMD is used for denoising the signal to obtain effective information. read more The combination of optimal VMD parameters of quadratic penalty αv and decomposition mode k was obtained by using the GWO to select the modal component with the smallest center frequency as effective information. Second, EMD and VMD-GWO parallel optimization algorithms are used to reconstruct the signal to obtain denoising and enhanced signals. Finally, a real experiment was carried out with the pulse Lidar ranging equipment. Our method compared with EMD-soft, EMD-VMD,WL-db4//EMD-DT and WL-db4//VMD has achieved greater improvement. When the target distance and the reflectivity of the reflectivity plate are 30 m and 10%, respectively, the peak signal-to-noise ratio (PSNR) of the weak echo signal calculated by our method can reach 11.5284 dB. And when in the dead zone of the system ranging, it is effectively denoising and enhancing the signal.In the photonic design problem, a scientist or engineer chooses the physical parameters of a device to best match some desired device behavior. Many instances of the photonic design problem can be naturally stated as a mathematical optimization problem that is computationally difficult to solve globally. Because of this, several heuristic methods have been developed to approximately solve such problems. These methods often produce very good designs, and, in many practical applications, easily outperform 'traditional' designs that rely on human intuition. Yet, because these heuristic methods do not guarantee that the approximate solution found is globally optimal, the question remains of just how much better a designer might hope to do. This question is addressed by performance bounds or impossibility results, which determine a performance level that no design can achieve. We focus on algorithmic performance bounds, which involve substantial computation to determine. We illustrate a variety of both heuristic methods and performance bounds on two examples. In these examples (and many others not reported here) the performance bounds show that the heuristic designs are nearly optimal, and can be considered globally optimal in practice. This review serves to clearly set up the photonic design problem and unify existing approaches for calculating performance bounds, while also providing some natural generalizations and properties.Measurements of beam stability for mid-infrared (IR)-emitting quantum cascade lasers (QCLs) are important for applications that require the beam to travel through air to remote targets, such as free-space communication links. We report beam-quality measurement results of narrow-ridge, 4.6 µm-emitting buried-heterostructure (BH) QCLs fabricated using ICP etching and HVPE regrowth. Beam-quality measurements under QCW operation exhibit M2 less then 1.2 up to 1 W for ∼5 µm-wide ridges. 5 µm-wide devices display some small degree of centroid motion with increasing output power ( less then 0.125 mrad), which corresponds to a targeting error of ∼1.25 cm over a distance of 100 m.The grating, lens, and linear sensor determine a spectrometer's wavelength resolution and measurement range. While conventional methods have tried to improve the optical design to obtain a better resolution, they have a limitation caused by the physical property. To improve the resolution, we introduce a super-resolution method from the computer vision field. We propose tilting an area sensor to realize accurate subpixel shifting and recover a high-resolution spectrum using interpolated spectrally varying kernels. We experimentally validate that the proposed method achieved a high spectral resolution of 0.141nm in 400-800nm by just tilting the sensor in the spectrometer.Ultrafast wave-mixing spectroscopies involving extreme ultraviolet (EUV) attosecond pulses provide unprecedented insight into electronic dynamics. Here, we proposed a versatile lifetime-detection method for doubly excited states with odd or even parities by mixing an attosecond EUV pulse with two few-cycle near infrared (NIR) pulses in atomic helium under a noncollinear geometry. By properly choosing the time order of the pulse sequence, the spatially resolved nonlinear signals carry significant information of the decaying dynamics of excited states, which can be utilized to retrieve the lifetimes of states with different parities in a single measurement. The validity and robustness of the method has been verified by numerical simulations based on a few-level model of helium including the spatial distribution of atoms. The accuracy of the lifetime measurement method is better than a few hundred attoseconds. It provides a powerful tool for probing decaying dynamics of the electronic wave packet with superb resolution.The on-water radiometric approach employs a unique provision to obtain water-leaving radiance from nadir (Lw(λ)) which can be used for the calibration of ocean color satellites. In this effort, we address the measurement precision associated with Lw(λ) from a single on-water instrument, which is an important aspect of measurement uncertainty. First, we estimated the precision as the ratio of the standard deviation of the means of repeated measurements to the mean of these measurements. We show that the measurement precision for Lw(λ) is within 2.7-3.7% over 360-700 nm. The corresponding remote sensing reflectance spectra (Rrs(λ)) from the same instrument also exhibit a high precision of 1.9-2.8% in the same spectral domain. link2 These measured precisions of radiance and reflectance over the 360-700 nm range are independent of the optical water type. Second, we quantified the consistency of on-water Lw(λ) and Rrs(λ) from two collocated systems for further insight into their measurement repeatability. The comparison reveals that Lw(λ) measurements in the 360-700 nm agree with each other with an absolute percentage difference of less than 3.5%. The corresponding Rrs(λ) data pairs are subjected to increased differences of up to 8.5%, partly due to variable irradiance measurements (Es(λ)). The evaluation of measurement precision corroborates the reliability of the on-water acquisition of radiometric data for supporting satellite calibration and validation.Faraday rotation spectroscopy (FRS) employs the Faraday effect to detect Zeeman splitting in the presence of a magnetic field. In this article, we present system design and implementation of radical sensing in a photolysis reactor using FRS. High sensitivity (100 ppb) and time resolved in situ HO2 detection is enabled with a digitally balanced acquisition scheme. Specific advantages of employing FRS for sensing in such dynamic environments are examined and rigorously compared to the more established conventional laser absorption spectroscopy (LAS). Experimental results show that FRS enables HO2 detection when LAS is deficient, and FRS compares favorably in terms of precision when LAS is applicable. The immunity of FRS to spectral interferences such as absorption of hydrocarbons and other diamagnetic species absorption and optical fringing are highlighted in comparison to LAS.Spot-size converter (SSC) is an essential building block for integrated photonic circuits applied as a mode transformer between optical components. One typical issue for SSC is the difficulty of broadening the vertical field profile. Herein, we propose a nanopixel SSC (1 × 2 μm2) with changing hole size and density. Unlike a typical SSC, this configuration controls both the lateral and vertical field profiles relatively easily by enhancing the nanopixel density. A vertical field expansion of 1.21 μm was obtained by enhancing the nanopixel density. In addition, we designed the optical field in the lateral direction using deep neural network (DNN)-based learning to realize a perfect circular spot for high coupling efficiency that reached -3 dB at λ0 = 1.572 μm when the optical field aspect ratio was adjusted to 1 after training for 200 epochs. Furthermore, the vertical expansion was increased from 1.21 to 4.9 μm and the coupling efficiency from -3 to -0.41 dB by combining it a silicon dioxide window structure (5 × 15 × 10 μm3). The 1-dB operating bandwidth of the designed SSC structure is 100 nm (1.5-1.6 μm), while fabrication tolerance of the nanopixels and window structure length for the designed SSC structure are ±15 nm and ±250 nm when the coupling efficiency drops by 1 dB.We present spectral-dependent electronic-photonic modeling of vertical-cavity surface-emitting laser (VCSEL)-multimode fiber (MMF) links for next-generation high-speed interconnects. The beam coupling processes, between the VCSEL and the MMF and between the MMF and the photodetector (PD), are discussed, with spectral-dependent three-dimensional launch conditions analyzed. The model accounts for fiber effects on the transmission performance, specifically modal attenuation, dispersion, mode mixing, and mode partition noise. link3 An advanced split-step small-segment (4-S) method simulates the signal evolution over the MMF with high accuracy and high efficiency. Experimental validation at 25 Gbps confirms the high accuracy of the VCSEL-MMF link model. The model reveals that larger radial offsets can further excite lower-order mode groups reducing the power distributed to higher-order groups when a tilted beam couples to the input fiber facet. With an optimized misalignment launch, the modal bandwidth is greatly improved by 3.8-fold compared to the conventional center launch. The model helps determine the optimum launch condition to improve link performance metrics such as transmission reach.We generate optical fields whose polarization structures not only rotate about their propagation axis but also can be controlled to accelerate independently from their spatial profile. We show that by combining accelerated intensity transport with orthogonal polarization states, we can produce a vector beam that displays optical activity with periodical acceleration and deceleration of the Stokes vector during propagation. We achieve this with orthogonal, scalar fields, represented by weighted superpositions of oppositely charged Bessel beams. In addition to their creation, we show that the Stokes vector can be made to accelerate or decelerate at specific locations along the Poincaré sphere by tailoring the generating basis. We also witness an optical current, or intensity transport, between local positions in the field that corresponds with the occurrence of the state-of-polarization accelerating or decelerating.