Grossmanhandberg9979
Maladaptive eating behavior is a growing public health problem and compulsively eating excessive food in a short time, or binge eating, is a key symptom of many eating disorders. In order to investigate the binge-like eating behavior in female rats, induced by intermittent food restrictions/refeeding and frustration stress, we analyzed for the first time the metabolic profile obtained from serum of rats, through nuclear magnetic resonance (NMR) spectroscopy. In this experimental protocol, rats were exposed to chow food restricting/refeeding and frustration stress manipulation. This stress procedure consists of 15 min exposure to the odor and sight of a familiar chocolate paste, without access to it, just before offering the palatable food. In this model, a "binge-eating episode" was considered the significantly higher palatable food consumption within 2 h in restricted and stressed rats (R + S) than in the other three experimental groups rats with no food restriction and no stress (NR + NS), only stressed rats (NR + S) or only restricted rats (R + NS). Serum samples from these four different rat groups were collected. The statistical analysis of the 1 H NMR spectral profiles of the four sets of samples pointed to O- and N-acetyl glycoproteins as the main biomarkers for the discrimination of restriction effects. Other metabolites, such as threonine, glycine, glutamine, acetate, pyruvate and lactate, showed trends that may be useful to understand metabolic pathways involved in eating disorders. This study suggested that NMR-based metabolomics is a suitable approach to detect biomarkers related to binge-eating behavior.Ribosomal frameshifting is an important pathway used by many viruses for protein synthesis that involves mRNA translocation of various numbers of nucleotides. Resolving the mRNA positions with subnucleotide precision will provide critical mechanistic information that is difficult to obtain with current techniques. We report a method of high-resolution DNA rulers with subnucleotide precision and the discovery of new frameshifting intermediate states on mRNA containing a GA7 G motif. Two intermediate states were observed with the aid of fusidic acid, one at the "0" reading frame and the other near the "-1" reading frame, in contrast to the "-2" and "-1" frameshifting products found in the absence of the antibiotic. We termed the new near-"-1" intermediate the Post(-1*) state because it was shifted by approximately half a nucleotide compared to the normal "-1" reading frame at the 5'-end. This indicates a ribosome conformation that is different from the conventional model of three reading frames. Our work reveals uniquely precise mRNA motions and subtle conformational changes that will complement structural and fluorescence studies.
Ferula gummosa Boiss. and Ferula galbaniflua Boiss. & Buhse (Apiaceae) are two important Iranian plants that are considered as potential sources of galbanum (barijeh). Galbanum is traditionally used for treating different diseases including flatulence and memory impairment.
According to a phylogenetic analysis of the nrDNA ITS sequence and the Flora Iranica, F. gummosa has been considered as a synonym of F. galbaniflua. However, F. galbaniflua and F. gummosa grow in two different geographical locations and have different metabolic patterns. Some researchers believe that F. gummosa and F. galbaniflua are two distinct species. To discriminate these species, we compared metabolic profiles of F. gummosa and F. galbaniflua samples.
H-NMR-based metabolomics analysis was used for classification of F. gummosa and F. galbaniflua samples collected from northeast Iran. The acquired data were analyzed using hierarchical cluster analysis (HCA), partial least squares discriminant analysis (PLS-DA) and orthogonal projection to latent structures discriminant analysis (OPLS-DA).
The result showed a clear separation between the two species that may be related to the quantity and diversity of their metabolites. Ferula gummosa had higher mogoltacin levels, while F. galbaniflua had higher feselol levels. this website Ligupersin A and conferdione were significantly detected in F. gummosa, whereas sterol compounds were significantly detected in F. galbaniflua.
Our findings indicate that clear metabolomics discrimination of F. gummosa and F. galbaniflua makes their chemotaxonomic classification possible.
Our findings indicate that clear metabolomics discrimination of F. gummosa and F. galbaniflua makes their chemotaxonomic classification possible.Proteins often exert their function by binding to other cellular partners. The hot spots are key residues for protein-protein binding. Their identification may shed light on the impact of disease associated mutations on protein complexes and help design protein-protein interaction inhibitors for therapy. Unfortunately, current machine learning methods to predict hot spots, suffer from limitations caused by gross errors in the data matrices. Here, we present a novel data pre-processing pipeline that overcomes this problem by recovering a low rank matrix with reduced noise using Robust Principal Component Analysis. Application to existing databases shows the predictive power of the method.The glycol alkoxysilanes, tetrakis(2-hydroxyethyl)silane (THEOS), and tris(2-hydroxyethyl)methyl silane (MeTHEOS) are water soluble derivatives of tetraethoxysilane (TEOS) and methyltriethoxysilane (MeTEOS) and precursors of the system silane-chitosan reviewed in this work. The glycol modified alkoxysilanes are obtained by transesterification reaction of TEOS or MeTEOS with ethylene glycol. The reaction evolution is monitored by 29 Si NMR. It is possible to observe the formation of the various species of glycol alkoxysilanes in equilibrium as the reaction proceeds showing that the oligomers formation is favored at longer reaction times with the final product tendency to gel keeping the complete water solubility. The glycol alkoxysilanes are synthesized at moderated reaction conditions, by using the Piers-Rubinsztajn (PR) reaction. Additionally, it is already known that THEOS is compatible with different natural polysaccharides as chitosan and the same behavior has been demonstrated in this work for MeTHEOS. Several reports refer studies regarding the system THEOS-polysaccharides to synthesize hybrid materials. The system THEOS-chitosan is known but the characterization as well as the way silane-chitosan interact has not been studied in detail. In the present report, chemical evidence of the covalent interactions THEOS- and MeTHEOS-chitosan based on NMR studies (13 C and 29 Si) are presented as intended.The trend to a world with ubiquitous electronics has the need for novel concepts for sensors and actuators that are lightweight, flexible, low-cost, and also sustainable. Piezoelectric transducers on the basis of functional polymers can meet these expectations. In this work, a novel concept for paper-embedded large-area piezoelectric devices realized solely by means of roll-to-roll (R2R) mass printing and post printing technologies including inline poling are introduced. The device set-up, as well as the process technology, offers the great opportunity for a cost-efficient and environmentally friendly mass production of thin and flexible organic large-area piezoelectric devices. As the functional layers are embedded into paper by the hot lamination of two poly(vinylidene fluoride-co-trifluoroethylene) P(VDF-TrFE) layers, the printed electronics is protected and invisible. The paper gives insights to the R2R printing of a 500 m long web including R2R post printing processes and electrical and acoustic inline characterization. Fully R2R processed devices show a high remnant polarization of up to 78 mC m-2 and can be realized with high yield of >90%. Finally, a 360° surround-sound installation realized with a 387 cm long paper web consisting of 56 piezoelectric speakers including wiring is presented.
Various errors in the procedure of specimen collection have been reported as the primary causes of pre-analytical errors. The aim of this study was to monitor and assess the reasons and frequencies of rejected samples in China.
A pre-analytical external quality assessment (EQA) scheme involving six quality indicators (QIs) was conducted from 2017 to 2019. Rejection rate was calculated for each QI. The difference of the rejection rates over the time was checked by Chi-square test. Furthermore, the 25th, 50th, and 75th percentiles of the results from total laboratories each year were calculated as optimum, desirable, and minimum level of performance specifications.
In total, 423 laboratories submitted data continuously for six EQA rounds. The overall rejection rates were 0.2042%, 0.1709%, 0.1942%, 0.1689%, 0.1593%, and 0.1491%, respectively. The most common error was sample hemolysed (0.0514%-0.0635%), and the least one was sample not received (0.0008%-0.0014%). A significant reduction in percentages was observed for all QIs. For biochemistry and immunology, hemolysis accounted for more than half of the rejection causes, while for hematology, the primary cause shifted from incorrect fill level to sample clotted. The quality specifications had improved over time, except for the optimum level.
The significant reduction in error rates on sample rejection we observed suggested that laboratories should pay more attention to the standardized specimen collection. We also provide a benchmark for QIs performance specification to help laboratories increase awareness about the critical aspects in the need of improvement actions.
The significant reduction in error rates on sample rejection we observed suggested that laboratories should pay more attention to the standardized specimen collection. We also provide a benchmark for QIs performance specification to help laboratories increase awareness about the critical aspects in the need of improvement actions.The critical role of primary care clinicians (PCCs) in Alzheimer's disease (AD) prevention, diagnosis and management must evolve as new treatment paradigms and disease-modifying therapies (DMTs) emerge. Our understanding of AD has grown substantially no longer conceptualized as a late-in-life syndrome of cognitive and functional impairments, we now recognize that AD pathology builds silently for decades before cognitive impairment is detectable. Clinically, AD first manifests subtly as mild cognitive impairment (MCI) due to AD before progressing to dementia. Emerging optimism for improved outcomes in AD stems from a focus on preventive interventions in midlife and timely, biomarker-confirmed diagnosis at early signs of cognitive deficits (i.e. MCI due to AD and mild AD dementia). A timely AD diagnosis is particularly important for optimizing patient care and enabling the appropriate use of anticipated DMTs. An accelerating challenge for PCCs and AD specialists will be to respond to innovations in diagnostics and therapy for AD in a system that is not currently well positioned to do so. To overcome these challenges, PCCs and AD specialists must collaborate closely to navigate and optimize dynamically evolving AD care in the face of new opportunities. In the spirit of this collaboration, we summarize here some prominent and influential models that inform our current understanding of AD. We also advocate for timely and accurate (i.e. biomarker-defined) diagnosis of early AD. In doing so, we consider evolving issues related to prevention, detecting emerging cognitive impairment and the role of biomarkers in the clinic.