Greenbergmcleod6575

Z Iurium Wiki

The integration analysis showed eight dysregulated miRNA-mRNA pairs in penile carcinogenesis. Taken together, our findings contribute to a better understanding of the regulatory roles of miRNAs and altered transcripts levels in penile carcinogenesis.Long non-coding RNAs (lncRNAs) have been recently described as key mediators in the development of hematological malignancies. In the last years, circulating lncRNAs have been proposed as a new class of non-invasive biomarkers for cancer diagnosis and prognosis and to predict treatment response. The present study is aimed to investigate the potential of circulating lncRNAs as non-invasive prognostic biomarkers in myelofibrosis (MF), the most severe among Philadelphia-negative myeloproliferative neoplasms. We detected increased levels of seven circulating lncRNAs in plasma samples of MF patients (n = 143), compared to healthy controls (n = 65). Among these, high levels of LINC01268, MALAT1 or GAS5 correlate with detrimental clinical variables, such as high count of leukocytes and CD34+ cells, severe grade of bone marrow fibrosis and presence of splenomegaly. Strikingly, high plasma levels of LINC01268 (p = 0.0018), GAS5 (p = 0.0008) or MALAT1 (p = 0.0348) are also associated with a poor overall-survival while high levels of LINC01268 correlate with a shorter leukemia-free-survival. Finally, multivariate analysis demonstrated that the plasma level of LINC01268 is an independent prognostic variable, suggesting that, if confirmed in future in an independent patients' cohort, it could be used for further studies to design an updated classification model for MF patients.Magnetic resonance imaging (MRI) has enabled non-invasive cancer diagnosis, monitoring, and management in common clinical settings. However, inadequate quantitative analyses in MRI continue to limit its full potential and these often have an impact on clinicians' judgments. Magnetic resonance fingerprinting (MRF) has recently been introduced to acquire multiple quantitative parameters simultaneously in a reasonable timeframe. Initial retrospective studies have demonstrated the feasibility of using MRF for various cancer characterizations. Further trials with larger cohorts are still needed to explore the repeatability and reproducibility of the data acquired by MRF. At the moment, technical difficulties such as undesirable processing time or lack of motion robustness are limiting further implementations of MRF in clinical oncology. This review summarises the latest findings and technology developments for the use of MRF in cancer management and suggests possible future implications of MRF in characterizing tumour heterogeneity and response assessment.Gastrointestinal (GI) cancers are major health burdens worldwide and biomarkers are needed to improve the management of these diseases along their evolution. Circulating tumor DNA (ctDNA) is a promising non-invasive blood and other bodily-fluid-based biomarker in cancer management that can help clinicians in various cases for the detection, diagnosis, prognosis, monitoring and personalization of treatment in digestive oncology. learn more In addition to the well-studied prognostic role of ctDNA, the main real-world applications appear to be the assessment of minimal residual disease to further guide adjuvant therapy and predict relapse, but also the monitoring of clonal evolution to tailor treatments in metastatic setting. Other challenges such as predicting response to treatment including immune checkpoint inhibitors could also be among the potential applications of ctDNA. Although the level of advancement of ctDNA development in the different tumor localizations is still inhomogeneous, it might be now reliable enough to be soon used in clinical routine for colorectal cancers and shows promising results in other GI cancers.Chimeric antigen receptor (CAR) T cell therapy has emerged as an attractive strategy for cancer immunotherapy. Despite remarkable success for hematological malignancies, excessive activity and poor control of CAR T cells can result in severe adverse events requiring control strategies to improve safety. This work illustrates the feasibility of a zinc finger-based inducible switch system for transcriptional regulation of an anti-CD20 CAR in primary T cells providing small molecule-inducible control over therapeutic functions. We demonstrate time- and dose-dependent induction of anti-CD20 CAR expression and function with metabolites of the clinically-approved drug tamoxifen, and the absence of background CAR activity in the non-induced state. Inducible CAR T cells executed fine-tuned cytolytic activity against target cells both in vitro and in vivo, whereas CAR-related functions were lost upon drug discontinuation. This zinc finger-based transcriptional control system can be extended to other therapeutically important CARs, thus paving the way for safer cellular therapies.Artificial intelligence (AI) uses mathematical algorithms to perform tasks that require human cognitive abilities. AI-based methodologies, e.g., machine learning and deep learning, as well as the recently developed research field of radiomics have noticeable potential to transform medical diagnostics. AI-based techniques applied to medical imaging allow to detect biological abnormalities, to diagnostic neoplasms or to predict the response to treatment. Nonetheless, the diagnostic accuracy of these methods is still a matter of debate. In this article, we first illustrate the key concepts and workflow characteristics of machine learning, deep learning and radiomics. We outline considerations regarding data input requirements, differences among these methodologies and their limitations. Subsequently, a concise overview is presented regarding the application of AI methods to the evaluation of thyroid images. We developed a critical discussion concerning limits and open challenges that should be addressed before the translation of AI techniques to the broad clinical use. Clarification of the pitfalls of AI-based techniques results crucial in order to ensure the optimal application for each patient.In the single-arm non-interventional OTILIA study, patients with newly diagnosed International Federation of Gynecology and Obstetrics (FIGO) stage IIIB-IV ovarian cancer received bevacizumab (15 mg/kg every 3 weeks for up to 15 months) and standard carboplatin-paclitaxel. The primary aim was to assess safety and progression-free survival (PFS). Subgroup analyses according to age were prespecified. The analysis population included 824 patients (453 aged less then 70 years, 371 aged ≥70 years). At data cutoff, the median bevacizumab duration was 13.8 months. Grade ≥3 adverse events (AEs), serious AEs, and AEs leading to bevacizumab discontinuation were more common in older than younger patients, whereas treatment-related AEs were less common. Median PFS was 19.4 months, with no clear difference according to age (20.0 vs. 19.3 months in patients less then 70 vs. ≥70 years, respectively). One-year OS rates were 92% and 90%, respectively. Mean change from baseline in global health status/quality of life showed a clinically meaningful increase over time. In German routine oncology practice, PFS and safety were similar to reported randomized phase 3 bevacizumab trials in more selected populations. There was no notable reduction in effectiveness and tolerability in patients aged ≥70 years; age alone should not preclude use of bevacizumab-containing therapy. ClinicalTrials.gov NCT01697488.Background Transmembrane proteins (TMEM) constitute a large family of proteins spanning the entirety of the lipid bilayer. However, there is still a lack of knowledge about their function or mechanism of action. In this study, we analyzed the expression of selected TMEM genes in patients with head and neck squamous cell carcinoma (HNSCC) to learn their role in tumor formation and metastasis. Materials and Methods Using TCGA data, we analyzed the expression levels of different TMEMs in both normal and tumor samples and compared those two groups depending on clinical-pathological parameters. We selected four TMEMs whose expression was highly correlated with patient survival status and subjected them to further analysis. The pathway analysis using REACTOME and the gene set enrichment analysis (GSEA) were performed to evaluate the association of those TMEMs with genes involved in hallmarks of cancer as well as in oncogenic and immune-related pathways. In addition, the fractions of different immune cell subpopulatell carcinoma. We found that ANO1, TMEM156, TMEM173, and TMEM213 correlated with clinical status and immune responses in HNSCC patients, pointing them as biomarkers for a better prognosis and treatment. This is the first study describing such the role of TMEMs in HNSCC. Future clinical trials should confirm the potential of those genes as targets for personalized therapy of HNSCC.

single-staged stereotactic radiosurgery (SRS) is an established part of the multimodal treatment in neuro-oncology. Radiation necrosis after high-dose irradiation is a known complication, but there is a lack of evidence about the risk factors. The aim of this study was to evaluate possible risk factors for radiation necrosis in patients undergoing radiosurgery.

patients treated with radiosurgery between January 2004 and November 2020 were retrospectively analyzed. The clinical data, imaging and medication were gathered from electronic patient records. The largest diameter of the tumors was measured using MRI scans in T1 weighted imaging with gadolinium and the edema in T2 weighted sequences. The diagnosis of a radiation necrosis was established analyzing imaging criteria combined with clinical course or pathologically confirmed by subsequent surgical intervention. Patients developing radiation necrosis detected after SRS were compared to patients without evidence of an overshooting irradiation reaction.

5 for every 1 mm increase in multivariate analysis.

large diameter and high doses were reliable independent risk factors leading to more frequent radiation necroses, regardless of tumor type in patients undergoing radiosurgery. Alternative therapeutic procedures may be considered in lesions with large volume and an expected high radiation doses due to the increased risk of developing radiation necrosis.

large diameter and high doses were reliable independent risk factors leading to more frequent radiation necroses, regardless of tumor type in patients undergoing radiosurgery. Alternative therapeutic procedures may be considered in lesions with large volume and an expected high radiation doses due to the increased risk of developing radiation necrosis.It is well established that fertility is an important issue for young women with cancer at reproductive age, as many have not initiated or completed their parenthood goals when diagnosed. Because cancer treatments may impair fertility, women face fertility decisions that are often complex and surrounded by uncertainty. This may put patients at risk for psychological distress and the experience of regret regarding decisions made at diagnosis, which may be associated with a negative impact on women's QoL. This narrative review addresses current knowledge about decisional regret regarding fertility preservation decisions in adult female cancer patients at reproductive age. Electronic searches were conducted on Pubmed database for articles published in English from 1 January 2000 to 1 July 2021 that assessed decisional regret following fertility decisions in young women diagnosed at childbearing age. Of the 96 articles identified, nine provided information on decisional regret regarding fertility decisions. Studies reported that, overall, decisional regret regarding oncofertility decisions was low.

Autoři článku: Greenbergmcleod6575 (Mcneil Adamsen)