Gotfredsenshapiro5249
Overall, CSI NGS Portal helps researchers rapidly analyse their NGS data and share results with colleagues without the aid of a bioinformatician. The portal is freely available at https//csibioinfo.nus.edu.sg/csingsportal.Owing to its chemical structure, wide availability and renewable nature, lignin is a promising candidate for the partial replacement of fossil-based raw material in the synthesis of epoxy resins. Its poor compatibility has been reported to be one of the main drawbacks in this domain. On the other hand, a well-established modification method for lignin epoxidation has been used for many years for the improvement of lignin compatibility. However, the extent of the effect of lignin epoxidation on the improvement of bio-based epoxy mechanical properties, applied as adhesives, is still an open question in the literature. In this context, a pristine and industrial grade kraft lignin (AKL) was reacted with epichlorohydrin to yield epoxidized lignin (E-AKL) in this work. Afterwards, AKL or E-AKL were separately blended with petroleum-based epoxy resin at 15 and 30 wt% and cured with a commercial amine. The adhesive curing kinetic was evaluated using a novel technique for thermal transition characterization, Temperature Modulated Optical Refractometry (TMOR); the results showed that the incorporation of AKL reduces the crosslinking rate, and that this effect is overcome by lignin modification. Mechanical tests revealed an improvement of impact and practical adhesion strength for samples containing 15 wt% of E-AKL. These results elucidate the effect of lignin epoxidation on the application of lignin-based epoxy adhesives, and might support the further development and application of these bio-based materials.MicroRNAs (miRNAs) are important regulators of several biological processes, such as cell growth, cell proliferation, embryonic development, tissue differentiation, and apoptosis. Currently, over 2000 mammalian miRNAs have been reported to regulate these biological processes. A subset of microRNAs was found to be localized to human mitochondria (mitomiRs). Through years of research, over 400 mitomiRs have been shown to modulate the translational activity of the mitochondrial genome. While miRNAs have been studied for years, the function of mitomiRs and their role in neurodegenerative pathologies is not known. The purpose of our article is to highlight recent findings that relate mitomiRs to neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's. We also discuss the involvement of mitomiRs in regulating the mitochondrial genome in age-related neurodegenerative diseases.Background Friedreich's ataxia (FA) is a rare autosomal recessive mitochondrial disease resulting of a triplet repeat expansion guanine-adenine-adenine (GAA) in the frataxin (FXN) gene, exhibiting progressive cerebellar ataxia, diabetes and cardiomyopathy. We aimed to determine the relationship between cardiac biomarkers, serum N-terminal pro-brain natriuretic peptide (NT-proBNP), and serum cardiac high-sensitivity troponin (hsTnT) concentrations, and the extent of genetic abnormality and cardiac parameters. Methods Between 2013 and 2015, 85 consecutive genetically confirmed FA adult patients were prospectively evaluated by measuring plasma hsTnT and NT-proBNP concentrations, electrocardiogram, and echocardiography. Results The 85 FA patients (49% women) with a mean age of 39 ± 12 years, a mean disease onset of 17 ± 11 years had a mean SARA (Scale for the Assessment and Rating of Ataxia) score of 26 ± 10. The median hsTnT concentration was 10 ng/L (3 to 85 ng/L) and 34% had a significant elevated hsTnT ≥ 14 ng/L. Increased septal wall thickness was associated with increased hsTnT plasma levels (p less then 0.001). The median NT-proBNP concentration was 31 ng/L (5 to 775 ng/L) and 14% had significant elevated NT-proBNP ≥ 125 ng/L. Markers of increased left ventricular filling pressure (trans mitral E/A and lateral E/E' ratio) were associated with increased NT-proBNP plasma levels (p = 0.01 and p = 0.01). Length of GAA or the SARA score were not associated with hsTnT or NT-proBNP plasma levels. Conclusion hsTnT was increased in 1/3 of the adult FA and associated with increased septal wall thickness. Increased NT-proBNP remained a marker of increased left ventricular filling pressure. This could be used to identify patients that should undergo a closer cardiac surveillance.Acute kidney injury (AKI) is one of the most frequent postoperative complications after liver transplantation (LT). Increased serum ammonia levels due to the liver disease itself may affect postoperative renal function. This study aimed to compare the incidence of postoperative AKI according to preoperative serum ammonia levels in patients after LT. read more Medical records from 436 patients who underwent LT from January 2010 to February 2020 in a single university hospital were retrospectively reviewed. The patients were then categorized according to changes in plasma creatinine concentrations within 48 h of LT using the Acute Kidney Injury Network criteria. A preoperative serum ammonia level above 45 mg/dL was associated with postoperative AKI (p less then 0.0001). Even in patients with a normal preoperative creatinine level, when the ammonia level was greater than 45 μg/dL, the incidence of postoperative AKI was significantly higher (p less then 0.0001); the AKI stage was also higher in this group than in the group with preoperative ammonia levels less than or equal to 45 μg/dL (p less then 0.0001). Based on the results of our research, an elevation in preoperative serum ammonia levels above 45 μg/dL is related to postoperative AKI after LT.Conventional therapeutic applications of mesenchymal stromal cells (MSCs) focus on cell replacement and differentiation; however, increasing evidence suggests that most of their therapeutic effects are carried out by their various secretions. This study investigated the application of conditioned medium (CM) from human umbilical cord blood-derived MSCs (hUCB-MSCs) to improve hair growth and developed a method to reliably produce this optimized CM. Primed MSC-derived CM (P-CM) with combinations of TGF-β1 and LiCl was optimized by comparing its effects on the cell viability of dermal papilla cells (DPCs). P-CM significantly increased the viability of DPCs compared to CM. The secretion of vascular endothelial growth factor (VEGF) in DPCs was regulated by the macrophage migration inhibitory factor (MIF) in the P-CM secreted by MSCs. These findings suggest that P-CM can improve the efficacy in hair growth via a paracrine mechanism and that MIF in P-CM exerts hair growth-promoting effects via a VEGF-related β-catenin and p-GSK-3β [SER9] signaling pathway. Furthermore, clinical trials have shown that 5% P-CM improved androgenetic alopecia through producing an increased hair density, thickness, and growth rate, suggesting that this topical agent may be a novel and effective treatment option for patients with androgenetic alopecia.Crude glycerol (C3H8O3) is a major by-product of biodiesel production from vegetable oils and animal fats. The increased biodiesel production in the last two decades has forced glycerol production up and prices down. However, crude glycerol from biodiesel production is not of adequate purity for industrial uses, including food, cosmetics and pharmaceuticals. The purification process of crude glycerol to reach the quality standards required by industry is expensive and dificult. Novel uses for crude glycerol can reduce the price of biodiesel and make it an economical alternative to diesel. Moreover, novel uses may improve environmental impact, since crude glycerol disposal is expensive and dificult. Glycerol is a versatile molecule with many potential applications in fermentation processes and synthetic chemistry. It serves as a glucose substitute in microbial growth media and as a precursor in the synthesis of a number of commercial intermediates or fine chemicals. Chlorinated derivatives of glycerol are an important class of such chemicals. The main focus of this review is the conversion of glycerol to chlorinated derivatives, such as epichlorohydrin and chlorohydrins, and their further use in the synthesis of additional downstream products. Downstream products include non-cyclic compounds with allyl, nitrile, azide and other functional groups, as well as oxazolidinones and triazoles, which are cyclic compounds derived from ephichlorohydrin and chlorohydrins. The polymers and ionic liquids, which use glycerol as an initial building block, are highlighted, as well.Several investigators have reported about the intricate molecular mechanism underlying periodontal diseases (PD). Nevertheless, the role of specific genes, cells, or cellular mechanisms involved in the pathogenesis of periodontitis are still unclear. Although periodontitis is one of the most prevalent oral diseases globally, there are no pre-diagnostic markers or therapeutic targets available for such inflammatory lesions. A pivotal role is played by pro- and anti-inflammatory markers in modulating pathophysiological and physiological processes in repairing damaged tissues. In addition, effects on osteoimmunology is ever evolving due to the ongoing research in understanding the molecular mechanism lying beneath periodontal diseases. The aim of the current review is to deliver an evidence-based update on the molecular mechanism of periodontitis with a particular focus on recent developments. Reports regarding the molecular mechanism of these diseases have revealed unforeseen results indicative of the fact that significant advances have been made to the periodontal medicine over the past decade. There is integrated hypothesis-driven research going on. Although a wide picture of association of periodontal diseases with immune response has been further clarified with present ongoing research, small parts of the puzzle remain a mystery and require further investigations.Background Driving performance is strongly vulnerable to drowsiness and vigilance fluctuations. Excessive sleepiness may alter concentration, alertness, and reaction times. As people age, sleep undergoes some changes, becoming fragmented and less deep. However, the effects of these modifications on daily life have not been sufficiently investigated. Recently, the assessment of sleepiness became mandatory in Europe for people at risk who need the driving license release. Moreover, considering the expectation that people around the world are rapidly aging, it is necessary to investigate the relationships between senescence sleep changes, vigilance levels, and driving-related cognitive skills. Method 80 healthy subjects (40 young adults and 40 elders) participated in the study. Sleep quality, sleepiness, and vigilance levels were assessed through the Pittsburgh Sleep Quality Index, the Karolinska Sleepiness Scale, the Epworth Sleepiness Scale, and the Psychomotor Vigilance Task (PVT). Driving-related cognitive abilities were assessed through Vienna Test System TRAFFIC, investigating selective attention, tachistoscopic perception, and risk assumption. Results 2 × 2 between-subject ANOVAs showed less habitual sleep efficiency and worse performances in PVT in the older group. Unexpectedly, younger subjects show higher self-rated sleepiness. Moreover, older adults have lower performance in attention and perception tests, but they appear to be more cautious in situations involving traffic. Finally, the multiple regressions show age to be the only robust predictor of cognitive driving-related abilities. Conclusions This is the first study that investigates the relationships among sleepiness/vigilance and specific driving-related cognitive skills on a sufficiently large sample. Nevertheless, the study should be considered preliminary and does not allow us to understand how specific changes in sleep architecture impact performances in the elders' everyday life and, specifically, on driving skills.