Gordonlentz6055
The co-occurrence network revealed the cooperative interactions among the functional microfloras in which dechlorinators, BTEX degraders, and fermentative bacteria jointly promoted the dechlorination. These findings provided us a further understanding of the NA processes in a commingled plume.The individual and combined toxicity of antibiotics and nanoplastics in marine organisms has received increasing attention. However, many studies have been mostly focused on the impacts on the directly exposed generation (F0). In this study, intergenerational effects of sulfamethazine (SMZ) and nanoplastic fragments (polystyrene, PS) on the growth and the gut microbiota of marine medaka (Oryzias melastigma) were investigated. The results showed that parental exposure to dietary SMZ (4.62 mg/g) alone and PS (3.45 mg/g) alone for 30 days decreased the body weight (by 13.41% and 34.33%, respectively) and altered the composition of gut microbiota in F1 males (two months after hatching). Interestingly, parental exposure to the mixture of SMZ and PS caused a more modest decrease in the body weight of F1 males than the PS alone (15.60% vs 34.33%). The hepatic igf1 level and the relative abundance of the host energy metabolism related phylum Bacteroidetes for the SMZ + PS group were significantly higher than those for the PS group (igf1, increased by 97.1%; Bacteroidetes, 2.876% vs 0.375%), suggesting that the parentally derived mixture of SMZ and PS might influence the first microbial colonization of gut in a different way to the PS alone. This study contributes to a better understanding of the long-term risk of antibiotics and nanoplastics to marine organisms.Osmotic membrane bioreactors (OMBRs) have been applied to enhance removal of antibiotics, however, information on the effects of molecular structures on the behavior of antibiotics is still lacking. Herein, adsorption kinetics, transformation pathways, and membrane rejection mechanisms of OMBRs were investigated by adding two typical antibiotics (i.e., sulfadiazine, SDZ, and tetracycline hydrochloride, TC-HCl). 80.70-91.12% of TC-HCl was removed by adsorption and biodegradation, while 17.50-75.14% of SDZ was removed by membrane rejection; this depended on its concentration due to reduced electrostatic interactions and hydrophobic adsorption. The adsorption capacity of TC-HCl (i.e., 1.34±0.01 mg/g) was significantly higher than that of SDZ (i.e., 0.18±0.03 mg/g) due to enhanced π-π interactions, hydrogen bonding and improved electrostatic interactions. The abundant production of polysaccharide-like substances from TC-HCl biodegradation contributed to microbial metabolism and thus enhanced microbial function during TC-HCl biotransformation. The primary degradation pathways were determined by microbial function analysis, and the primary intermediates from TC-HCl degradation were less toxic than those from SDZ degradation due to the different reactions of amino groups. These results and the corresponding mechanism provide a theoretical foundation for the further development of OMBR technology for highly efficient treatment of antibiotic wastewater.An integrated gasification-flameless combustion-melting process was approached by a twin-cyclonic flow in a hazardous waste thermal treatment plant. A series of advanced scrubber, cyclonic demister, activated carbon adsorption, and baghouse processes were equipped for the end-of-pipe treatment. The untreated filterable particulate matter, CO, and NOx levels were only 283, 47.1, and 15.9 mg/Nm3, indicating the flameless combustion inhibited their formation by narrowing the post-combustion zone. The filterable particle mass-size distribution was equally contributed by nucleation, accumulation, and coarse formations, while their number concentration was predominated by nucleation (99.6%). That could enhance the adsorption of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) on ultrafine particles. Both total mass and toxic equivalent concentrations of PCDD/Fs were reduced 99.9% by the new air pollution control system when a slight reformation occurred during scrubbing. However, the escaped PCDD/Fs were mainly distributed on the ultrafine particles, which should be further inhibited by either increasing their sizes or equipping backup filtrations. Finally, the new process concentrates the PCDD/Fs into the scrubbing sludge, which could be recirculated back into the thermal process. This study not only reveals the emission risk of the ultrafine particle-bound PCDD/Fs, but also provides an effective process to remove them for industrial application.This study evaluates the degradation efficiency of Malathion using Fenton (Fe2+/H2O2 F), photo-Fenton (UV/Fe2+/H2O2 PF), and sono-photo Fenton (US/UV/Fe2+/H2O2 SPF) processes as well as determines the toxicity of the byproducts of degradation. The effect of various operational parameters on the Malathion degradation rate, including pH, Fe2+ concentration, Malathion concentration, and H2O2 were studied. The removal efficiency was determined to be 98.79% for the SPF, > 70.92% for the PF, and > 55.94% for the F processes under the following optimal conditions pH = 3, [H2O2]0 = 700 mg/L, [Fe2+]0 = 20 mg/L, and [Malathion]0 = 20 mg/L. The operating costs (USD/kgMalathion-removed) were acquired as SPF > PF > F. Moreover, Malaoxon, diethyl maleate, diethyl malate, ethyl 2-hydroxysuccinate, and D-malate were among the detected byproducts from the Malathion degradation in the SPF process. Both the non-carcinogenic risk and the carcinogenic risk were assessed to establish the quality of the effluent from all three processes. The toxicity of the treated effluents, determined by Vibrio fischeri luminescence, indicated that the toxicity depends on the selected treatment process. The high degradation efficiency of the Fenton-based processes is not equivalent to achieving detoxification of the effluents. As such, the SPF process was determined to be the most effective for the Malathion degradation, total organic carbon (TOC) removal, and health risk assessment.The growing consumption of plastic materials has increased hazardous threats to all environmental media, since current plastic waste management methods release microplastics and toxic chemicals. As such, massive generation of plastic derived pollutants leads to significant public health and environmental problems. In this work, an environmentally sound method for valorization of plastic waste is suggested. In detail, pyrolysis of polycarbonate-containing plastic waste such as automotive headlight housing (AHH) was carried out using CO2 as a co-reactant. AHH was chosen as it discharges bisphenol A (BPA) and aromatic compounds. Under CO2 condition, emissions of BPA and its derivatives were suppressed by 14.5% due to gas phase reactions (GPRs) with CO2. Nevertheless, reaction kinetics for GPRs was not significant. To impart the GPRs, catalytic pyrolysis was done using Ni and Co-based catalysts. During catalytic pyrolysis, syngas production was more than tenfold up comparing to pyrolysis without catalyst. selleck kinase inhibitor The expedited GPRs over catalysts resulted in the enhanced syngas formation. Total concentration of the toxic chemicals from CO2-assisted catalytic pyrolysis of AHH decreased by 86.1% and 66.7% over Ni and Co catalysts, comparing to those from N2 environment.Arsenic sulfide sludge (ASS) is a kind of deleterious waste which contains various valuable metallic elements, such as Re and Pb, which are always associated with arsenic-bearing phases in ASS. The leaching speed and efficiency of valuable elements may depend on the phase constitution. Here, we proposed a sequential leaching method to thoroughly understand the constitution of arsenic-bearing phase and the distribution of valuable elements in ASS. The results show that five major arsenic-bearing phases exist in ASS amorphous As2S3, crystalline As4S4, As2O3, and As atoms dissolved into the lattice of PbS and PbSO4 phases. Re is mainly distributed in As2S3 and As4S4 phases. During the leaching process, the dissolution of As2O3 particles and As2O3 layers on the surface of As2S3/As4S4 particles occurs first. Then, the reaction between As2S3/As4S4 particles and copper sulfate happens. The order of leaching sequence is As2O3, amorphous As2S3 and crystalline As4S4. The majority of Re element exists in the solution while almost all Pb element remains in the solid residues, which is beneficial for the separation and purification valuable elements individually. This work not only detailed determines the arsenic-bearing species, but also provides significant theoretical bases for extracting valuable elements from ASS.4-Aminobiphenyl (4-ABP) is a human bladder cancer carcinogen found in the manufacture of azo dyes and the composition of cigarette smoke in the environment. To determine whether low concentrations of 4-ABP induced or promote liver carcinogenesis and investigate the underlying mechanism, we have established the liver cell carcinogenesis model in human liver cell lines and zebrafish to evaluate liver cancer development associated with long-term exposure to low concentrations of 4-ABP. Results show that repeated 4-ABP exposure promoted cellular proliferation and migration via the involvement of ROS in Ras/MEK/ERK pathway in vitro. Also, 4-ABP (1, 10, and 100 nM) induces hepatocellular carcinoma (HCC) formation in HBx, Src (p53-/-) transgenic zebrafish at four months of age and in wild-type zebrafish at seven months of age. In addition, we observed a correlation between the Ras-ERK pathway and 4-ABP-induced HCC in vitro and in vivo. Our finding suggests low concentrations of 4-ABP repeated exposure is a potential risk factor for liver cancer. To our knowledge, this is the first report on the promotion of liver carcinogenesis in human liver cells and zebrafish following 4-ABP exposure.The addition of wastes to silicate ceramics can considerably expand the compositional spectrum of raw materials with a possible inclusion of hazardous components. The present work quantitatively examines relevant literature to determine whether the benefits of incorporating hazardous elements (HEs) into silicate ceramics outweigh the pitfalls. The mobility of various HEs (Ba, Zn, Cu, Cr, Mo, As, Pb, Ni, and Cd) has been parameterised by three descriptors (immobilisation efficiency, mobilised fraction, and hazard quotient) using leaching data. HEs can be incorporated into both crystalline and glassy phases, depending on the ceramic body type. Moreover, silicate ceramics exhibit a remarkably high immobilisation efficiency (often exceeding 99.9%), as accomplished for Ba, Cd, Ni, and Zn elements. The pitfalls of the inertization process include an insufficient stabilisation of incorporated HEs, as indicated by the high hazard quotients (beyond the permissible limits established for inert materials) obtained in some cases for Mo, As, Cr, Pb, and Cu elements. Such behaviour is related to oxy-anionic complexes (Mo, As, Cr) that can form their own phases or are not linked to the tetrahedral framework of aluminosilicate glass. Pb and Cu elements are preferentially partitioned to glass with a low coordination number, while As and especially Mo are not always stabilised in silicate ceramics. These drawbacks necessitate conducting additional studies to develop appropriate inertisation strategies for these elements.