Goodwade4647
The association between vitamin C intake and breast cancer is unclear. This meta-analysis aimed to precisely assess the association of vitamin C intake with breast cancer risk and mortality. We searched the PubMed, Embase, and Web of Science databases up to June 2020 and found 69 studies relevant to breast cancer risk (54 studies) and survival (15 studies). Relative risks and 95% confidence intervals were calculated using the random-effects models. Pooled results suggested that the highest versus lowest vitamin C intake was significantly associated with a lower risk of breast cancer incidence (Relative Risk = 0.86; 95% confidence interval, 0.81-0.92). Sodium oxamate ic50 Dietary vitamin C but not supplements was found to reduce breast cancer risk (Relative Risk = 0.89; 95% confidence interval, 0.82-0.96). For the highest versus lowest vitamin C intake, the pooled hazard risk for breast cancer-specific mortality was 0.78 (95% confidence interval, 0.69-0.88), totality mortality was 0.82 (95% confidence interval, 0.74-0.91), and recurrence was 0.81 (95% confidence interval, 0.67-0.99). Our analysis suggests that higher vitamin C intake is significantly associated with reduced breast cancer incidence and mortality. However, the intake of vitamin C supplements has no significant effect on breast cancer prevention.Treatment of glioblastoma using radiotherapy and chemotherapy has various outcomes, key among them being cellular senescence. However, the molecular mechanisms of this process remain unclear. In the present study, we tested the ability of D-galactose (D-gal), a reducing sugar, to induce senescence in glioblastoma cells. Following pretreatment with D-gal, glioblastoma cell lines (C6 and U87MG) showed typical characteristics of senescence. These included the reduced cell proliferation, hypertrophic morphology, increased senescence-associated β-galactosidase activity, downregulation of Lamin B1, and upregulation of several senescence-associated genes such as p16, p53, and NF-κB. Furthermore, our results showed that D-gal was more suitable than etoposide (a DNA-damage drug) in inducing senescence of glioblastoma cells. Mechanistically, D-gal inactivated the YAP-CDK6 signaling pathway, while overexpression of YAP or CDK6 could restore D-gal-induced senescence of C6 cells. Finally, metformin, an anti-aging agent, activated the YAP-CDK6 pathway and suppressed D-gal-induced senescence of C6 cells. Taken together, these findings established a new model for analyzing senescence in glioblastoma cells, which occurred through the YAP-CDK6 pathway. This is expected to provide a basis for development of novel therapies for the treatment of glioblastoma.Cellular senescence is considered a stress response imposing a stable cell cycle arrest to restrict the growth of damaged cells. More recently however, cellular senescence was identified during mouse embryo development at particular structures during specific periods of time. This programmed cell senescence has been proposed to serve developmental and morphogenetic functions and to potentially represent an evolutionary origin of senescence. Cellular senescence has also been described to take place during bird (chick and quail) and amphibian (xenopus and axoltl) development. Fish however, have been described to show a very narrow and restricted pattern of developmental cell senescence. Here we carried out a detailed characterization of senescence during zebrafish development and found it to be conserved and widespread. Apart from yolk and cloaca, previously described structures, we also identified senescence in the developing central nervous system, intestine, liver, pronephric ducts, and crystalline. Interestingly, senescence at these developing structures disappeared upon treatment with senolytic compound ABT-263, supporting their senescent identity and opening the possibility of studying the contribution of this process to development. In summary, our findings extend the description of developmentally-programmed cell senescence to lower vertebrates contributing to the notion of the relevance of this process for embryo development.In the base excision repair pathway, MYH/MUTYH DNA glycosylase prevents mutations by removing adenine mispaired with 8-oxoG, a frequent oxidative lesion. MYH glycosylase activity is enhanced by Rad9-Rad1-Hus1 (9-1-1) checkpoint clamp and SIRT6 histone/protein deacetylase. Here, we show that MYH, SIRT6, and 9-1-1 are recruited to confined oxidatively damaged regions on telomeres in mammalian cells. Using different knockout cells, we show that SIRT6 responds to damaged telomeres very early, and then recruits MYH and Hus1 following oxidative stress. However, the recruitment of Hus1 to damaged telomeres is partially dependent on SIRT6. The catalytic activities of SIRT6 are not important for SIRT6 response but are essential for MYH recruitment to damaged telomeres. Compared to wild-type MYH, the recruitment of hMYHV315A mutant (defective in both SIRT6 and Hus1 interactions), but not hMYHQ324H mutant (defective in Hus1 interaction only), to damaged telomeres is severely reduced. The formation of MYH/SIRT6/9-1-1 complex is of biological significance as interrupting their interactions can increase cell's sensitivity to H2O2 and/or elevate cellular 8-oxoG levels after H2O2 treatment. Our results establish that SIRT6 acts as an early sensor of BER enzymes and both SIRT6 and 9-1-1 serve critical roles in DNA repair to maintain telomere integrity.Gamma-cyclodextrin (γCD) is a cyclic oligosaccharide consisting of eight α-(1,4)-linked glucopyranose subunits, which is often used in the food and pharmaceutical industries. However, little is known regarding the metabolic activity of "empty" γCD per se. Therefore, in the present study young C57BL/6 male mice received a control diet (CON) or an experimental diet that was supplemented with 12.88% γCD exchanged against corn starch. After 6 weeks of treatment, the voluntary wheel running activity was monitored and the muscle strength of mice was measured by employing Kondziela's inverted screen test and forelimb grip strength assay. The γCD-treated mice covered a significantly larger distance per night (CON 8.6 km, γCD 12.4 km) and were significantly longer active (CON 340 min, γCD 437 min). Moreover, γCD-treated mice significantly performed better at the inverted screen test indicated by an enhanced Kondziela score (CON 3.10, γCD 4.63). These data suggest that dietary γCD leads to an increased endurance. We also found a slightly anti-glycemic effect of γCD during oral glucose tolerance test.