Goodlomholt2853

Z Iurium Wiki

Due to the rapid growth of a tumor, the tumor cell metabolism becomes more active, resulting in the overexpression of albumin-binding proteins for transporting albumin as an energy and amino source. In that case, making use of nutrient transporters for targeted drug delivery to the brain becomes attractive. Herein, we synthesized albumin nanoparticles by a desolvation process, modified them with folic acid to enhance blood-brain-barrier (BBB) penetration and cellular uptake, and then loaded them with the antitumor drug paclitaxel (PTX) and autophagy inhibitor chloroquine (CQ) for combination therapy. The albumin nanoparticles could cross the BBB and target glioma cells effectively, and the combination therapy of PTX and CQ induced more cell apoptosis than PTX treatment alone in vitro. The results of the role of autophagy in the sensitivity of chemotherapeutic PTX to glioma cells showed that the stemness-associating genes (SOX2, POU5F1 and NANOG) of live glioma cells increased in the presence of PTX, while they dropped sharply with the combination including CQ. More importantly, it was found that the combined delivery system FA-BSA-NPPTX/CQ exhibited the most effective cell apoptosis. Our findings demonstrated that drug-loaded albumin nanoparticles could facilitate a combination of chemotherapy and autophagy inhibition for effective glioma therapy.Nanotube materials exhibit high drug loading capacity and controlled drug release properties, providing new opportunities for drug delivery. However, the intracellular trafficking paths of 1-dimensional (1D) nanostructured materials are poorly understood compared to their spherical counterparts, impeding the broad application of 1D materials as drug carriers. Here, we report the intracellular trafficking mechanism of nontoxic and biocompatible nanomaterials called anodic alumina nanotubes (AANTs), a model for 1D materials with a geometry that can be precisely engineered. The results indicated that AANTs enter the cells mainly by caveolin endocytosis and micropinocytosis and that cells use a novel macropinocytosis-late endosomes (LEs)-lysosomes route to transport AANTs. Moreover, liposomes (marked by DsRed-Rab18) are fully involved in the classical pathway of early endosomes (EEs)/LEs developing into lysosomes. The AANTs were delivered to the cells via two pathways slow endocytosis recycling and GLUT4 exocytosis vesicles. The AANTs also induced intracellular autophagy and then degraded via the endolysosomal pathway. Blocking endolysosomal pathways using autophagy inhibitors prevented the degradation of AANTs through lysosomes. Our results add new insights into the pathways and mechanisms of intracellular trafficking of AANTs, and suggest that intracellular trafficking and lysosomal degradation are highly interdependent and important for efficient drug delivery, and should be evaluated together for drug carrier development.Development of near infrared (NIR) light-responsive nanomaterials for high performance multimodal phototherapy within a single nanoplatform is still challenging in technology and biomedicine. Herein, a new phototherapeutic nanoagent based on FDA-approved Prussian blue (PB) functionalized oxygen-deficient molybdenum oxide nanoparticles (MoO3-x NPs) is strategically designed and synthesized by a facile one-pot size/morphology-controlled process. The as-prepared PB-MoO3-x nanocomposites (NCs) with a uniform particle size of ∼90 nm and high water dispersibility exhibited strong optical absorption in the first biological window, which is induced by plasmon resonance in an oxygen-deficient MoO3-x semiconductor. More importantly, PB-MoO3-x NCs not only exhibited a high photothermal conversion efficiency of ∼63.7% and photostability but also offered a further approach for the generation of reactive oxygen species (ROS) upon singular NIR light irradiation which significantly improved the therapeutic efficiency of the PB agent. Furthermore, PB-MoO3-x NCs showed a negligible cytotoxic effect in the dark, but an excellent therapeutic effect toward two triple-negative breast cancer (TNBC) cell lines at a low concentration (20 μg mL-1) of NCs and a moderate NIR laser power density. Additionally, efficient tumor ablation and metastasis inhibition in a 4T1 TNBC mouse tumor model can also be realized by synergistic photothermal/photodynamic therapy (PTT/PDT) under a single continuous NIR wave laser. Taken together, this study paved the way for the use of a single nanosystem for multifunctional therapy.The clinical success of a titanium (Ti) percutaneous implant requires the integration with soft tissues to form a biological seal, which effectively combats marsupialization, premigration and infection after implantation. However, the bioinert surface of Ti or its alloys prevents the material from sufficient biological sealing and limits the application of Ti or its alloys as percutaneous implants. In this study, we achieved a collagen coating to bioactivate the surface of Ti-6Al-4V. In order to enable covalent functionalization, we first deposited a polydopamine (PDA) coating on Ti-6Al-4V based on dopamine self-polymerization and then immobilized collagen chains on PDA. Compared with physical absorption, such a chemical bonding method through mussel-inspired chemistry showed better stability of the coating. Meanwhile, the cellular tests in vitro indicated that collagen functionalization on the Ti-6Al-4V surface showed better adhesion of human foreskin fibroblasts (HFFs) and human immortal keratinocytes (HaCaTs). Selleck PF-04957325 The subcutaneous implantation tests in rats indicated that the collagen modification attenuated soft tissue response and improved tissue compatibility compared with either pure Ti-6Al-4V or merely PDA coated samples. The facile bioinspired approach enables a persistent modification of metals by macromolecules under aqueous environments, and the PDA-collagen coated titanium alloy is worthy of further investigation as a percutaneous implant.The epidemic of multidrug-resistant bacteria calls for the improvement of both detection methods for bacterial infections and methods of treatment. Nitric oxide is a known potent antibacterial agent, but due to its gaseous and highly reactive nature, it is difficult to incorporate into a stable antibacterial compound. In this paper, we synthesize a nitric oxide donor attached to a fluorescent compound, creating a material that can both detect and kill the deadly multi-drug resistant bacteria strain Pseudomonas aeruginosa. Detection occurs through a bacterial enzyme-activated color change, showing a clear and obvious change from blue to yellow under UV light. The synthesized compound spontaneously releases 853 μmol of nitric oxide/g from a 10 mM initial concentration. Antibacterial efficacy studies after exposing Pseudomonas aeruginosa to a 10 mM dose of the synthesized compound show a 55-75% reduction in bacteria after 24 hours. This work is the first instance of a small molecule dual-function material that can both detect and kill bacteria.

Autoři článku: Goodlomholt2853 (Peters Noonan)