Goodkoch4843

Z Iurium Wiki

Histone H3.3 is an H3 variant which differs from the canonical H3.1/2 at four residues, including a serine residue at position 31 which is evolutionarily conserved. The H3.3 S31 residue is phosphorylated (H3.3 S31Ph) at heterochromatin regions including telomeres and pericentric repeats. However, the role of H3.3 S31Ph in these regions remains unknown. In this study, we find that H3.3 S31Ph regulates heterochromatin accessibility at telomeres during replication through regulation of H3K9/K36 histone demethylase KDM4B. In mouse embryonic stem (ES) cells, substitution of S31 with an alanine residue (H3.3 A31 -phosphorylation null mutant) results in increased KDM4B activity that removes H3K9me3 from telomeres. In contrast, substitution with a glutamic acid (H3.3 E31, mimics S31 phosphorylation) inhibits KDM4B, leading to increased H3K9me3 and DNA damage at telomeres. H3.3 E31 expression also increases damage at other heterochromatin regions including the pericentric heterochromatin and Y chromosome-specific satellite DNA repeats. We propose that H3.3 S31Ph regulation of KDM4B is required to control heterochromatin accessibility of repetitive DNA and preserve chromatin integrity.Epigenetic changes alter the expression of genes at both pre- and post-transcriptional levels without changing their DNA sequence. Accumulating evidence suggests that such changes can modify cellular behavior and characteristics required during development and in response to various extracellular stimuli. Trophoblast cells develop from the outermost trophectoderm layer of the blastocyst and undergo many phenotypic changes as the placenta develops. One such phenotypic change is differentiation of the epithelial natured cytotrophoblasts into the mesenchymal natured extravillous trophoblasts. Selleck Tomivosertib The extravillous trophoblasts are primarily responsible for invading into the maternal decidua and thus establishing connection with the maternal spiral arteries. Any dysregulation of this process can have adverse effects on the pregnancy outcome. Hence, tight regulation of this epithelial-mesenchymal transition (EMT) is critical for successful pregnancy. This review summarizes the recent research on the epigenetic regulation of the EMT occurring in the trophoblast cells during placental development. The functional significance of chemical modifications of DNA and histone, which regulate transcription, as well as non-coding RNAs, which control gene expression post-transcriptionally, is discussed in relation to trophoblast biology.Human endogenous retroviruses, also called LTR elements, can be bound by transcription factors and marked by different histone modifications in different biological contexts. Recently, individual LTR or certain subclasses of LTRs such as LTR7/HERVH and LTR5_Hs/HERVK families have been identified as cis-regulatory elements. However, there are still many LTR elements with unknown functions. Here, we dissected the landscape of histone modifications and regulatory map of LTRs by integrating 98 ChIP-seq data in human embryonic stem cells (ESCs), and annotated the active LTRs enriching enhancer/promoter-related histone marks. Notably, we found that MER57E3 functionally acted as proximal regulatory element to activate respective ZNF gene. Additionally, HERVK transcript could mainly function in nucleus to activate the adjacent genes. Since LTR5_Hs/LTR5 was bound by many early embryo-specific transcription factors, we further investigated the expression dynamics in different pluripotent states. LTR5_Hs/LTR5/HERVK exhibited higher expression level in naïve ESCs and extended pluripotent stem cells (EPSCs). Functionally, the LTR5_Hs/LTR5 with high activity could serve as a distal enhancer to regulate the host genes. Ultimately, our study not only provides a comprehensive regulatory map of LTRs in human ESCs, but also explores the regulatory models of MER57E3 and LTR5_Hs/LTR5 in host genome.

To evaluate the current cutoff score and a recalibrated adaptation of the Veterans Health Administration (VHA) Risk Index for Serious Prescription Opioid-Induced Respiratory Depression or Overdose (RIOSORD) in active duty service members.

Retrospective case-control.

Military Health System.

Active duty service members dispensed ≥ 1 opioid prescription between January 1, 2018 and December 31, 2019.

Service members with a documented opioid overdose were matched 110 to controls. An active duty-specific (AD) RIOSORD was constructed using the VHA RIOSORD components. Analyses examined the risk stratification and predictive characteristics of two RIOSORD versions (VHA and AD).

Cases (n = 95) were matched with 950 controls. Only 6 of the original 17 elements were retained in the AD RIOSORD. Long-acting or extended-release opioid prescriptions, antidepressant prescriptions, hospitalization, and emergency department visits were associated with overdose events. The VHA RIOSORD had fair performance (C-statistils had similar overall performance with respect to the C-statistic, an AD-specific index threshold improves sensitivity. The calibrated AD RIOSORD does not represent an end-state, but a bridge to a future model developed on a wider range of patient variables, taking into consideration features that capture both care received, and care that was not received.

Renal artery stenosis (RAS) is an important cause of chronic kidney disease and secondary hypertension. In animal models, renal ischemia leads to downregulation of growth-factor expression and loss of intrarenal microcirculation. However, little is known about the sequelae of large vessel occlusive disease on the microcirculation within human kidneys.

This study included 5 patients who underwent nephrectomy due to renovascular occlusion, and 7 non-stenotic discarded donor kidneys (4 deceased donors). Micro-computed tomography was performed to assess microvascular spatial densities and tortuosity, an index of microvascular immaturity. Renal protein expression, gene expression, and histology were studied in-vitro using immunoblotting, polymerase-chain-reaction, and staining.

RAS demonstrated loss of medium-sized vessels (0.2-0.3mm)comparedtodonorkidneys (p=0.037) and increased microvascular tortuosity. RAS kidneys had greater protein expression of angiopoietin-1, hypoxia-inducible factor (HIF)-1α, and thrS.What makes a mouse a mouse, and not a hamster? Differences in gene regulation between the two organisms play a critical role. Comparative analysis of gene coexpression networks provides a general framework for investigating the evolution of gene regulation across species. Here, we compare coexpression networks from 37 species and quantify the conservation of gene activity 1) as a function of evolutionary time, 2) across orthology prediction algorithms, and 3) with reference to cell- and tissue-specificity. We find that ancient genes are expressed in multiple cell types and have well conserved coexpression patterns, however they are expressed at different levels across cell types. Thus, differential regulation of ancient gene programs contributes to transcriptional cell identity. We propose that this differential regulation may play a role in cell diversification in both the animal and plant kingdoms.Mutations in the well-known tumor suppressor PTEN are observed in many cancers. PTEN is a dual-specificity phosphatase that harbors lipid and protein-phosphatase activities. The Caenorhabditis elegans PTEN ortholog is daf-18, which has pleiotropic effects on dauer formation, aging, starvation resistance, and development. Function of 3 daf-18 point-mutants, G174E, D137A, and C169S, had previously been investigated using high-copy transgenes in a daf-18 null background. These alleles were generated based on their mammalian counterparts and were treated as though they specifically disrupt lipid or protein-phosphatase activity, or both, respectively. Here, we investigated these alleles using genome editing of endogenous daf-18. We assayed 3 traits relevant to L1 starvation resistance, and we show that each point mutant is essentially as starvation-sensitive as a daf-18 null mutant. Furthermore, we show that G174E and D137A do not complement each other, suggesting overlapping effects on lipid and protein-phosphatase activity. We also show that each allele has strong effects on nucleocytoplasmic localization of DAF-16/FoxO and dauer formation, both of which are regulated by PI3K signaling, similar to a daf-18 null allele. In addition, each allele also disrupts M-cell quiescence during L1 starvation, though D137A has a weaker effect than the other alleles, including the null. Our results confirm that daf-18/PTEN is important for promoting starvation resistance and developmental arrest and that it is a potent regulator of PI3K signaling, and they highlight challenges of using genetic analysis to link specific DAF-18/PTEN enzymatic activities to particular phenotypes.Advances in genome sequencing have produced hundreds of thousands of bacterial genome sequences, many of which have integrated prophages derived from temperate bacteriophages. These prophages play key roles by influencing bacterial metabolism, pathogenicity, antibiotic resistance, and defense against viral attack. However, they vary considerably even among related bacterial strains, and they are challenging to identify computationally and to extract precisely for comparative genomic analyses. Here, we describe DEPhT, a multimodal tool for prophage discovery and extraction. It has three run modes that facilitate rapid screening of large numbers of bacterial genomes, precise extraction of prophage sequences, and prophage annotation. DEPhT uses genomic architectural features that discriminate between phage and bacterial sequences for efficient prophage discovery, and targeted homology searches for precise prophage extraction. DEPhT is designed for prophage discovery in Mycobacterium genomes but can be adapted broadly to other bacteria. We deploy DEPhT to demonstrate that prophages are prevalent in Mycobacterium strains but are absent not only from the few well-characterized Mycobacterium tuberculosis strains, but also are absent from all ∼30 000 sequenced M. tuberculosis strains.

To evaluate facility postoperative opioid prescribing patterns in comparison to published guidelines and adherence to opioid safety mandates.

This quality analysis was performed between November 2019 and March 2020. Patients were identified to have been opioid naïve prior to receiving a new opioid prescription postoperatively during the study period. Patient charts were reviewed, and patients were contacted to collect desired data. Statistical analysis was performed to evaluate distributions of morphine equivalent daily dose and opioid day supply prescribed across study subpopulations.

Ninety-four of 100 prescriptions evaluated were determined to be within quantity or duration recommendations of the selected guideline. Statistical analysis found no significantly different distributions between the duration and quantity of opioid prescribed at discharge and patient-specific risk factors. Forty-eight patients did not use the entire quantity of the initial opioid prescription dispensed. Of those patients, 26 still had opioids within the home.

Autoři článku: Goodkoch4843 (Healy Vittrup)