Goldbergrichards1927
The rotation of Paracoccus denitrificans F1-ATPase (PdF1) was studied using single-molecule microscopy. At all concentrations of adenosine triphosphate (ATP) or a slowly hydrolyzable ATP analog (ATPγS), above or below Km, PdF1 showed three dwells per turn, each separated by 120°. Analysis of dwell time between steps showed that PdF1 executes binding, hydrolysis, and probably product release at the same dwell. The comparison of ATP binding and catalytic pauses in single PdF1 molecules suggested that PdF1 executes both elementary events at the same rotary position. This point was confirmed in an inhibition experiment with a nonhydrolyzable ATP analog (AMP-PNP). Rotation assays in the presence of adenosine diphosphate (ADP) or inorganic phosphate at physiological concentrations did not reveal any obvious substeps. Although the possibility of the existence of substeps remains, all of the datasets show that PdF1 is principally a three-stepping motor similar to bacterial vacuolar (V1)-ATPase from Thermus thermophilus This contrasts with all other known F1-ATPases that show six or nine dwells per turn, conducting ATP binding and hydrolysis at different dwells. Pauses by persistent Mg-ADP inhibition or the inhibitory ζ-subunit were also found at the same angular position of the rotation dwell, supporting the simplified chemomechanical scheme of PdF1 Comprehensive analysis of rotary catalysis of F1 from different species, including PdF1, suggests a clear trend in the correlation between the numbers of rotary steps of F1 and Fo domains of F-ATP synthase. F1 motors with more distinctive steps are coupled with proton-conducting Fo rings with fewer proteolipid subunits, giving insight into the design principle the F1Fo of ATP synthase.Carbapenem-resistant Enterobacteriaceae (CRE) are multidrug-resistant pathogens for which new treatments are desperately needed. Carbapenemases and other types of antibiotic resistance genes are carried almost exclusively on large, low-copy-number plasmids (pCRE). Accordingly, small molecules that efficiently evict pCRE plasmids should restore much-needed treatment options. We therefore designed a high-throughput screen to identify such compounds. A synthetic plasmid was constructed containing the plasmid replication machinery from a representative Escherichia coli CRE isolate as well as a fluorescent reporter gene to easily monitor plasmid maintenance. The synthetic plasmid was then introduced into an E. coli K12 tolC host. We used this screening strain to test a library of over 12,000 known bioactive agents for molecules that selectively reduce plasmid levels relative to effects on bacterial growth. From 366 screen hits we further validated the antiplasmid activity of kasugamycin, an aminoglycoside; CGS 15943, a nucleoside analog; and Ro 90-7501, a bibenzimidazole. All three compounds exhibited significant antiplasmid activity including up to complete suppression of plasmid replication and/or plasmid eviction in multiple orthogonal readouts and potentiated activity of the carbapenem, meropenem, against a strain carrying the large, pCRE plasmid from which we constructed the synthetic screening plasmid. Additionally, we found kasugamycin and CGS 15943 blocked plasmid replication, respectively, by inhibiting expression or function of the plasmid replication initiation protein, RepE. In summary, we validated our approach to identify compounds that alter plasmid maintenance, confer resensitization to antimicrobials, and have specific mechanisms of action.Among the 20 amino acids, three of them-leucine (Leu), arginine (Arg), and serine (Ser)-are encoded by six different codons. In comparison, all of the other 17 amino acids are encoded by either 4, 3, 2, or 1 codon. Peculiarly, Ser is separated into two disparate Ser codon boxes, differing by at least two-base substitutions, in contrast to Leu and Arg, of which codons are mutually exchangeable by a single-base substitution. We propose that these two different Ser codons independently emerged during evolution. In this hypothesis, at the time of the origin of life there were only seven primordial amino acids Valine (coded by GUX [X = U, C, A or G]), alanine (coded by GCX), aspartic acid (coded by GAY [Y = U or C]), glutamic acid (coded by GAZ [Z = A or G]), glycine (coded by GGX), Ser (coded by AGY), and Arg (coded by CGX and AGZ). All of these were derived from GGX for glycine by single-base substitutions. Later in evolution, another class of Ser codons, UCX, were derived from alanine codons, GCX, distinctly different from the other primordial Ser codon, AGY. From the analysis of the Escherichia coli genome, we find extensive disparities in the usage of these two Ser codons, as some genes use only AGY for Ser in their genes. In contrast, others use only UCX, pointing to distinct differences in their origins, consistent with our hypothesis.Microglia are resident central nervous system macrophages and the first responders to neural injury. Until recently, microglia have been studied only in animal models with exogenous or transgenic labeling. While these studies provided a wealth of information on the delicate balance between neuroprotection and neurotoxicity within which these cells operate, extrapolation to human immune function has remained an open question. Here we examine key characteristics of retinal macrophage cells in live human eyes, both healthy and diseased, with the unique capabilities of our adaptive optics-optical coherence tomography approach and owing to their propitious location above the inner limiting membrane (ILM), allowing direct visualization of cells. Our findings indicate that human ILM macrophage cells may be distributed distinctly, age differently, and have different dynamic characteristics than microglia in other animals. For example, we observed a macular pattern that was sparse centrally and peaked peripherally in healthy human eyes. Moreover, human ILM macrophage density decreased with age (∼2% of cells per year). Our results in glaucomatous eyes also indicate that ILM macrophage cells appear to play an early and regionally specific role of nerve fiber layer phagocytosis in areas of active disease. While we investigate ILM macrophage cells distinct from the larger sample of overall retinal microglia, the ability to visualize macrophage cells without fluorescent labeling in the live human eye represents an important advance for both ophthalmology and neuroscience, which may lead to novel disease biomarkers and new avenues of exploration in disease progression.The unicellular green alga Chlamydomonas reinhardtii is capable of photosynthetic H2 production. H2 evolution occurs under anaerobic conditions and is difficult to sustain due to 1) competition between [FeFe]-hydrogenase (H2ase), the key enzyme responsible for H2 metabolism in algae, and the Calvin-Benson-Bassham (CBB) cycle for photosynthetic reductants and 2) inactivation of H2ase by O2 coevolved in photosynthesis. Recently, we achieved sustainable H2 photoproduction by shifting algae from continuous illumination to a train of short (1 s) light pulses, interrupted by longer (9 s) dark periods. This illumination regime prevents activation of the CBB cycle and redirects photosynthetic electrons to H2ase. Employing membrane-inlet mass spectrometry and [Formula see text], we now present clear evidence that efficient H2 photoproduction in pulse-illuminated algae depends primarily on direct water biophotolysis, where water oxidation at the donor side of photosystem II (PSII) provides electrons for the reduction of protons by H2ase downstream of photosystem I. This occurs exclusively in the absence of CO2 fixation, while with the activation of the CBB cycle by longer (8 s) light pulses the H2 photoproduction ceases and instead a slow overall H2 uptake is observed. We also demonstrate that the loss of PSII activity in DCMU-treated algae or in PSII-deficient mutant cells can be partly compensated for by the indirect (PSII-independent) H2 photoproduction pathway, but only for a short ( less then 1 h) period. Thus, PSII activity is indispensable for a sustained process, where it is responsible for more than 92% of the final H2 yield.Two fundamental constraints limit the number of characters in text that can be displayed at one time-print size and display size. These dual constraints conflict in two important situations-when people with normal vision read text on small digital displays, and when people with low vision read magnified text. Here, we describe a unified framework for evaluating the joint impact of these constraints on reading performance. We measured reading speed as a function of print size for three digital formats (laptop, tablet, and cellphone) for 30 normally sighted and 10 low-vision participants. Our results showed that a minimum number of characters per line is required to achieve a criterion of 80% of maximum reading speed 13 characters for normally sighted and eight characters for low-vision readers. This critical number of characters is nearly constant across font and display format. Possible reasons for this required number of characters are discussed. Combining these character count constraints with the requirements for adequate print size reveals that an individual's use of a small digital display or the need for magnified print can shrink or entirely eliminate the range of print size necessary for achieving maximum reading speed.Employing liquid organic hydrogen carriers (LOHCs) to transport hydrogen to where it can be utilized relies on methods of efficient chemical dehydrogenation to access this fuel. Therefore, developing effective strategies to optimize the catalytic performance of cheap transition metal-based catalysts in terms of activity and stability for dehydrogenation of LOHCs is a critical challenge. Here, we report the design and synthesis of ultrasmall nickel nanoclusters (∼1.5 nm) deposited on defect-rich boron nitride (BN) nanosheet (Ni/BN) catalysts with higher methanol dehydrogenation activity and selectivity, and greater stability than that of some other transition-metal based catalysts. The interface of the two-dimensional (2D) BN with the metal nanoparticles plays a strong role both in guiding the nucleation and growth of the catalytically active ultrasmall Ni nanoclusters, and further in stabilizing these nanoscale Ni catalysts against poisoning by interactions with the BN substrate. We provide detailed spectroscopy characterizations and density functional theory (DFT) calculations to reveal the origin of the high productivity, high selectivity, and high durability exhibited with the Ni/BN nanocatalyst and elucidate its correlation with nanocluster size and support-nanocluster interactions. This study provides insight into the role that the support material can have both regarding the size control of nanoclusters through immobilization during the nanocluster formation and also during the active catalytic process; this twofold set of insights is significant in advancing the understanding the bottom-up design of high-performance, durable catalytic systems for various catalysis needs.Collective conflicts among humans are widespread, although often highly destructive. A classic explanation for the prevalence of such warfare in some human societies is leadership by self-serving individuals that reap the benefits of conflict while other members of society pay the costs. Here, we show that leadership of this kind can also explain the evolution of collective violence in certain animal societies. We first extend the classic hawk-dove model of the evolution of animal aggression to consider cases in which a subset of individuals within each group may initiate fights in which all group members become involved. We show that leadership of this kind, when combined with inequalities in the payoffs of fighting, can lead to the evolution of severe intergroup aggression, with negative consequences for population mean fitness. We test our model using long-term data from wild banded mongooses, a species characterized by frequent intergroup conflicts that have very different fitness consequences for male and female group members.