Godfreymelendez1100
Seminolipid (also known as sulfogalactosylglycerolipid-SGG), present selectively in male germ cells, plays important roles in spermatogenesis and sperm-egg interaction. The proper degradation of SGG in apoptotic germ cells is also as important. Sertoli cells first phagocytose apoptotic germ cells, then Sertoli lysosomal arylsulfatase A (ARSA) desulfates SGG, the first step of SGG degradation. We have reported that aging male Arsa-/- mice become subfertile with SGG accumulation in Sertoli cell lysosomes, typical of a lysosomal storage disorder (LSD). Since reactive oxygen species (ROS) levels are increased in other glycolipid-accumulated LSDs, we quantified ROS in Arsa-/- Sertoli cells. Our analyses indicated increases in superoxide and H2O2 in Arsa-/- Sertoli cells with elevated apoptosis rates, relative to WT counterparts. Excess H2O2 from Arsa-/- Sertoli cells could travel into testicular germ cells (TGCs) to induce ROS production. Our results indeed indicated higher superoxide levels in Arsa-/- TGCs, compared with WT TGCs. Increased ROS levels in Arsa-/- Sertoli cells and TGCs likely caused the decrease in spermatogenesis and increased the abnormal sperm population in aging Arsa-/- mice, including the 50% decrease in sperm SGG with egg binding ability. In summary, our study indicated that increased ROS production was the mechanism through which subfertility manifested following SGG accumulation in Sertoli cells.Aspergillus fumigatus is a ubiquitous fungus and the main agent of aspergillosis, a common fungal infection in the immunocompromised population. Triazoles such as itraconazole and voriconazole are the common first-line drugs for treating aspergillosis. However, triazole resistance in A. fumigatus has been reported in an increasing number of countries. SCD inhibitor While most studies of triazole resistance have focused on mutations in the triazole target gene cyp51A, >70% of triazole-resistant strains in certain populations showed no mutations in cyp51A. To identify potential non-cyp51A mutations associated with triazole resistance in A. fumigatus, we analyzed the whole genome sequences and triazole susceptibilities of 195 strains from 12 countries. These strains belonged to three distinct clades. Our genome-wide association study (GWAS) identified a total of six missense mutations significantly associated with itraconazole resistance and 18 missense mutations with voriconazole resistance. In addition, to investigate itraconazole and pan-azole resistance, Fisher's exact tests revealed 26 additional missense variants tightly linked to the top 20 SNPs obtained by GWAS, of which two were consistently associated with triazole resistance. The large number of novel mutations related to triazole resistance should help further investigations into their molecular mechanisms, their clinical importance, and the development of a comprehensive molecular diagnosis toolbox for triazole resistance in A. fumigatus.Plant diseases are globally causing substantial losses in staple crop production, undermining the urgent goal of a 60% increase needed to meet the food demand, a task made more challenging by the climate changes. Main consequences concern the reduction of food amount and quality. Crop diseases also compromise food safety due to the presence of pesticides and/or toxins. Nowadays, biotechnology represents our best resource both for protecting crop yield and for a science-based increased sustainability in agriculture. Over the last decades, agricultural biotechnologies have made important progress based on the diffusion of new, fast and efficient technologies, offering a broad spectrum of options for understanding plant molecular mechanisms and breeding. This knowledge is accelerating the identification of key resistance traits to be rapidly and efficiently transferred and applied in crop breeding programs. This review gathers examples of how disease resistance may be implemented in cereals by exploiting a combination of basic research derived knowledge with fast and precise genetic engineering techniques. Priming and/or boosting the immune system in crops represent a sustainable, rapid and effective way to save part of the global harvest currently lost to diseases and to prevent food contamination.Autophagy is a lysosome-dependent intracellular degradation machinery that plays an essential role in the regulation of cellular homeostasis. As many studies have revealed that autophagy is related to cancer, neurodegenerative diseases, metabolic diseases, and so on, and it is considered as a promising drug target. Recent advances in structural determination and computational technologies provide important structural information on essential autophagy-related proteins. Combined with high-throughput screening methods, structure-activity relationship studies have led to the discovery of molecules that modulate autophagy. In this review, we summarize the recent structural studies on autophagy-related proteins and the discovery of modulators, indicating that targeting autophagy can be utilized as an effective strategy for novel drug development.This paper focuses on the evaluation of the fuel properties of Fischer-Tropsch diesel blends with conventional diesel. Incorporating this advanced fuel into conventional diesel production will enable the use of waste materials and non-food materials as resources, while contributing to a reduction in dependence on crude oil. To evaluate the suitability of using Fischer-Tropsch diesel, cetane number, cetane index, CFPP, density, flash point, heat of combustion, lubricity, viscosity, distillation curve, and fuel composition ratios using multidimensional GC × GC-TOFMS for different blends were measured. It was found that the fuel properties of the blended fuel are comparable to conventional diesel and even outperform conventional fuel in some parameters. All measurements were performed according to current standards, thus ensuring the repeatability of measurements for other research groups or the private sector.The approval of the first HIV-1 protease inhibitors (HIV-1 PRIs) marked a fundamental step in the control of AIDS, and this class of agents still represents the mainstay therapy for this illness. Despite the undisputed benefits, the necessary lifelong treatment led to numerous severe side-effects (metabolic syndrome, hepatotoxicity, diabetes, etc.). The HIV-1 PRIs are capable of interacting with "secondary" targets (off-targets) characterized by different biological activities from that of HIV-1 protease. In this scenario, the in-silico techniques undoubtedly contributed to the design of new small molecules with well-fitting selectivity against the main target, analyzing possible undesirable interactions that are already in the early stages of the research process. The present work is focused on a new mixed-hierarchical, ligand-structure-based protocol, which is centered on an on/off-target approach, to identify the new selective inhibitors of HIV-1 PR. The use of the well-established, ligand-based tools available in the DRUDIT web platform, in combination with a conventional, structure-based molecular docking process, permitted to fast screen a large database of active molecules and to select a set of structure with optimal on/off-target profiles.