Glennclancy7457
041-1.103, P 15) had higher ischaemic stroke risk than patients with low neutrophil-to-lymphocyte ratios ( less then 5). This was true among cancer patients both with (hazard ratio 11.598; 95% confidence interval 0.953-141.181) and without (hazard ratio 7.877; 95% confidence interval 2.351-26.389) atrial fibrillation. The neutrophil-to-lymphocyte ratio at cancer diagnosis is associated with the incidence of ischaemic stroke among cancer patients and might thus be useful for identifying patients at high risk of ischaemic stroke, allowing us to guide future preventive interventions.Spinal cord injury gradually spreads away from the epicentre of injury. The rate of degeneration on the rostral side of the injury differs from that on the caudal side. Rostral degeneration is an immediate process, while caudal degeneration is delayed. In this study, we demonstrated that the rostro-caudal differences in energy metabolism led to differences in the spread of degeneration in early thoracic cord injury using in vivo imaging. The blood flow at the rostral side of the injury showed ischaemia-reperfusion, while the caudal side presented stable perfusion. The rostral side had an ATP shortage 20 min after spinal cord injury, while the ATP levels were maintained on the caudal side. Breakdown products of purine nucleotides were accumulated at both sides of injury 18 h after spinal cord injury, but the principal metabolites in the tricarboxylic acid cycle and glycolytic pathway were elevated on the caudal side. Although the low-ATP regions expanded at the rostral side of injury until 24 h after spinal cord injury, the caudal-side ATP levels were preserved. The low-ATP regions on the rostral side showed mitochondrial reactive oxygen species production. Administration of 2-deoxy-d-glucose as a glycolysis inhibitor decreased the caudal ATP levels and expanded the low-ATP regions to the caudal side until 24 h after spinal cord injury. These results suggest that deficits in the glycolytic pathway accelerate the caudal degeneration, while immediate rostral degeneration is exacerbated by oxidative stress in early thoracic cord injury.The pathological cascade of tissue damage in mild traumatic brain injury is set forth by a perturbation in ionic homeostasis. However, whether this class of injury can be detected in vivo and serve as a surrogate marker of clinical outcome is unknown. We employ sodium MRI to test the hypotheses that regional and global total sodium concentrations (i) are higher in patients than in controls and (ii) correlate with clinical presentation and neuropsychological function. Given the novelty of sodium imaging in traumatic brain injury, effect sizes from (i), and correlation types and strength from (ii), were compared to those obtained using standard diffusion imaging metrics. Twenty-seven patients (20 female, age 35.9 ± 12.2 years) within 2 months after injury and 19 controls were scanned with proton and sodium MRI at 3 Tesla. Total sodium concentration, fractional anisotropy and apparent diffusion coefficient were obtained with voxel averaging across 12 grey and white matter regions. Linear regression was used to ols, and weak correlations with clinical presentation, when using a region-based approach. In contrast, sodium linear regression, capitalizing on partial volume correction and high sensitivity to global changes, revealed high effect sizes and associations with patient outcome. This suggests that well-recognized sodium imbalances in traumatic brain injury are (i) detectable non-invasively; (ii) non-focal; (iii) occur even when the antecedent injury is clinically mild. Finally, in contrast to our principle hypothesis, patients' sodium concentrations were lower than controls, indicating that the biological effect of traumatic brain injury on the sodium homeostasis may differ from that in other neurological disorders. Note This figure has been annotated.Whereas the effect of vagal nerve stimulation on emotional states is well established, its effect on cognitive functions is still unclear. Recent rodent studies show that vagal activation enhances reinforcement learning and neuronal dopamine release. The influence of vagal nerve stimulation on reinforcement learning in humans is still unknown. Here, we studied the effect of transcutaneous vagal nerve stimulation on reinforcement learning in eight long-standing seizure-free epilepsy patients, using a well-established forced-choice reward-based paradigm in a cross-sectional, within-subject study design. We investigated vagal nerve stimulation effects on overall accuracy using non-parametric cluster-based permutation tests. Furthermore, we modelled sub-components of the decision process using drift-diffusion modelling. We found higher accuracies in the vagal nerve stimulation condition compared to sham stimulation. Modelling suggests a stimulation-dependent increase in reward sensitivity and shift of accuracy-speed trade-offs towards maximizing rewards. Moreover, vagal nerve stimulation was associated with increased non-decision times suggesting enhanced sensory or attentional processes. No differences of starting bias were detected for both conditions. Accuracies in the extinction phase were higher in later trials of the vagal nerve stimulation condition, suggesting a perseverative effect compared to sham. RCM1 Together, our results provide first evidence of causal vagal influence on human reinforcement learning and might have clinical implications for the usage of vagal stimulation in learning deficiency.Prior studies have reported inconsistency in the lesion sites associated with verbal short-term memory impairments. Here we asked How many different lesion sites can account for selective impairments in verbal short-term memory that persist over time, and how consistently do these lesion sites impair verbal short-term memory? We assessed verbal short-term memory impairments using a forward digit span task from the Comprehensive Aphasia Test. First, we identified the incidence of digit span impairments in a sample of 816 stroke survivors (541 males/275 females; age at stroke onset 56 ± 13 years; time post-stroke 4.4 ± 5.2 years). Second, we studied the lesion sites in a subgroup of these patients (n = 39) with left hemisphere damage and selective digit span impairment-defined as impaired digit span with unimpaired spoken picture naming and spoken word comprehension (tests of speech production and speech perception, respectively). Third, we examined how often these lesion sites were observed in patients who either had no digit span impairments or digit span impairments that co-occurred with difficulties in speech perception and/or production tasks.