Gibbonsstevens2770

Z Iurium Wiki

Aggressive systemic mastocytosis (ASM) is a rare malignant disease characterized by disordered mast cell accumulation in various organs. We here describe a female ASM patient with a previous history of ovarian dysgerminoma.

Molecular cytogenomic analyses were performed to elucidate an etiological link between the ASM and dysgerminoma of the patient.

This patient was affected by ovarian dysgerminoma which was treated by chemotherapy and surgical resection. Having subsequently been in complete remission for 2 years, she developed symptoms of ASM. A somatic D816A mutation in the KIT gene was detected in her bone marrow, which facilitated the diagnosis of ASM. Unexpectedly, this KIT D816A variant was also detected in the prior ovarian dysgerminoma sample. Whole-exome sequencing allowed us to identify a somatic nonsense mutation of the TP53 gene in the bone marrow, but not in the dysgerminoma. Microarray analysis of the patient's bone marrow revealed a copy-number-neutral loss of heterozygosity at the TP53 locus, suggestive of the homozygous nonsense mutation in the TP53 gene. In addition, the loss of heterozygosity at the TP53 locus was also detected in the dysgerminoma.

These results indicated that either the mast cells causing the ASM in this case had originated from the preceding ovarian dysgerminoma as a clonal evolution of a residual tumor cell, which acquired the TP53 mutation, or that both tumors developed from a common cancer stem cell carrying the KIT D816A variation.

These results indicated that either the mast cells causing the ASM in this case had originated from the preceding ovarian dysgerminoma as a clonal evolution of a residual tumor cell, which acquired the TP53 mutation, or that both tumors developed from a common cancer stem cell carrying the KIT D816A variation.

The clinical benefits of treatment with radiofrequency ablation (RFA) and repeat hepatic resection (RHR) for recurrent hepatocellular carcinoma (RHCC) remain controversial. This meta-analysis aims to evaluate the outcomes and major complications of RFA versus RHR in patients with early-stage RHCC.

PubMed, Embase, Web of Science and the Cochrane Library were systematically searched for comparative studies on the evaluation of RHR versus RFA for RHCC. The primary outcome was overall survival (OS), and the secondary outcomes were progression-free survival (PFS) and major complications. Meta-analysis was performed using a random-effects model or fixed-effects model, and heterogeneity was tested by the Cochran Q statistic.

Ten studies with 1612 patients (RHR = 654, RFA = 958) were included in the meta-analysis. The meta-analysis showed that RHR had superior OS (HR 0.77, 95% CI =0.65-0.92, P = 0.004) and PFS (HR 0.81, 95% CI =0.67-0.98, P = 0.027) compared to RFA, whereas major complications may be less frequent in the RFA group (OR 0.15, 95% CI = 0.06-0.39, P < 0.001). In the subgroup analysis of patients with single RHCC ≤3 cm, OS (HR 1.03, 95% CI =0.69-1.52, P = 0.897) and PFS (HR 0.99, 95% CI = 0.71-1.37, P = 0.929) showed no significant differences in the comparison of RHR and RFA. Tipifarnib molecular weight In single RHCC> 3 cm and ≤ 5 cm, RFA showed an increased mortality in terms of OS (HR 0.57, 95% CI = 0.37-0.89, P = 0.014).

RHR offers a longer OS and PFS than RFA for patients with RHCC, but no statistically significant difference was observed for single RHCC ≤3 cm. The advantages of fewer major complications may render RFA an alternative treatment option for selected patients.

RHR offers a longer OS and PFS than RFA for patients with RHCC, but no statistically significant difference was observed for single RHCC ≤3 cm. The advantages of fewer major complications may render RFA an alternative treatment option for selected patients.

Barley scald, caused by the fungus Rhynchosporium commune, is distributed worldwide to all barley growing areas especially in cool and humid climates. Scald is an economically important leaf disease resulting in yield losses of up to 40%. To breed resistant cultivars the identification of quantitative trait loci (QTLs) conferring resistance to scald is necessary. Introgressing promising resistance alleles of wild barley is a way to broaden the genetic basis of scald resistance in cultivated barley. Here, we apply nested association mapping (NAM) to map resistance QTLs in the barley NAM population HEB-25, comprising 1420 lines in BC

S

generation, derived from crosses of 25 wild barley accessions with cv. Barke.

In scald infection trials in the greenhouse variability of resistance across and within HEB-25 families was found. NAM based on 33,005 informative SNPs resulted in the identification of eight reliable QTLs for resistance against scald with most wild alleles increasing resistance as compared to cv. Barke. Three of them are located in the region of known resistance genes and two in the regions of QTLs, respectively. The most promising wild allele was found at Rrs17 in one specific wild donor. Also, novel QTLs with beneficial wild allele effects on scald resistance were detected.

To sum up, wild barley represents a rich resource for scald resistance. As the QTLs were linked to the physical map the identified candidate genes will facilitate cloning of the scald resistance genes. The closely linked flanking molecular markers can be used for marker-assisted selection of the respective resistance genes to integrate them in elite cultivars.

To sum up, wild barley represents a rich resource for scald resistance. As the QTLs were linked to the physical map the identified candidate genes will facilitate cloning of the scald resistance genes. The closely linked flanking molecular markers can be used for marker-assisted selection of the respective resistance genes to integrate them in elite cultivars.

The scale degeneration is thought to be related to the adaptation to the extreme environment with cold climate and high-altitude in schizothoracine fishes. Gymnocypris eckloni, a schizothoracine fish living in plateau waters with the elevation above 2500 m, is nearly esquamate and only covered with shoulder scales and anal scales, making it a good model species to study the molecular mechanism of scale degeneration.

The transcriptomes of shoulder scaled skins (SSS), anal scaled skins (ASS) and scaleless skins (NSS) were sequenced and analyzed in G. eckloni at the age of 1 year. Histological examination showed that shoulder scale had completed its differentiation and anal scale just initiated the differentiation. A total of 578,046 unigenes were obtained from the transcriptomes, with 407,799 unigenes annotated in public databases. A total of 428 and 142 differentially expressed unigenes (DEUs) were identified between SSS and NSS, and between ASS and NSS, respectively, with 45 DEUs that were overlapped. Annotation analysis indicated that these DEUs were mainly enriched in Gene Ontology (GO) terms and KEGG pathways associated with bone and muscle formation, such as myofibril, contractile fiber, cytoskeletal protein binding, muscle structure development, cardiac muscle contraction, hypertrophic cardiomyopathy (HCM) and calcium signaling pathway.

Autoři článku: Gibbonsstevens2770 (Lauritsen Therkildsen)