Galbraithflynn9257
The addition of cerium fluoride into the melt resulted in the additional etching of the alloy surface. The addition of neodymium fluoride resulted in the formation of the point/inter-crystalline corrosion damages in the sample bulk. The samples of steel 12Cr18Ni10Ti were subjected to local cracking corrosion. The austenitic nickel-based alloys suffered specific local corrosion with formation of subsurface voids. Excellent corrosion resistance of the Monel alloy under the test conditions was found.Among silicone oligomers, polydimethylsiloxane (PDMS) is widely used industrially and has the advantage of improving the properties of other compounds, such as flame-retardant polyurethane (PU). However, as there are barriers to the synthesis of PU-grafted siloxane, owing to the polarity difference between isocyanate and PDMS, numerous research efforts are being aimed at improving the hydrophilicity of PDMS. To improve the hydrophilicity and reactivity of hydroxyl PDMS, bis(propane-1,2-diol)-terminated PDMS (G-PDMS-G) with four hydroxy (-OH) groups was synthesized through ring-opening addition to replace both ends of linear α,ω-hydroxyl PDMS (HO-PDMS-OH) with glycidol, resulting in hydrophilic PDMS rather than dihydroxy PDMS. In all cases of G-PDMS-G, the contact angle and viscosity both decreased by more than 20%, confirming the improved hydrophilicity. selleckchem In particular, G-PDMS-G-3, which has the largest molecular weight, demonstrated the greatest decrease in viscosity and contact angle (33%).The work proposes an innovative solution for the reduction of seismic effects on precast reinforced concrete (RC) structures. It is a semi-active control system based on the use of magnetorheological dampers. The special base restraint is remotely and automatically controlled according to a control algorithm, which modifies the dissipative capability of the structure as a function of an instantaneous dynamic response. The aim is that of reducing the base bending moment demand without a significant increase in the top displacement response. A procedure for the optimal calibration of the parameters involved in the control logic is also proposed. Non-linear modelling of a case-study structure has been performed in the OpenSees environment, also involving the specific detailing of a novel variable base restraint. Non-linear time history analyses against natural earthquakes allowed testing of the optimization procedure for the control algorithm parameters, finally the capability of the proposed technology to mitigate seismic risk of new or existing one-story precast RC structures is highlighted.The development of new technologies for thethermomechanical processing of metals and the improvement of the existing ones would be unattainable without the use of mathematical models. The physical and mechanical properties of alloys and the performance characteristics of the products made of these alloys are generally determined by the microstructure of materials. In real manufacturing processes, the deformation of metals and alloys occurs when they undergo complex (non-proportional) loading. Under these conditions, the formation of defect substructures, which do not happen at simple (proportional) loading, can take place. This is due to the occurrence of a great number of slip systems activated under loading along complex strain paths, which leads, for instance, to the more intense formation of barriers of different types, including barriers on split dislocations. In these processes, the formation and annihilation of dislocations proceed actively. In this paper, we present a three-level mathematical model that is based on an explicit description of the evolution dislocations density and the formation of dislocations barriers. The model is intended for the description of arbitrary complex loads with an emphasis on complex cyclic deformation.The model is composed of macrolevel (a representative macrovolume of the material that can be considered as an integration point in the finite-element modeling of real constructions), and mesolevel-1 (description of the mechanical response of a crystallite) and mesolevel-2 (description of the defect structure evolution in a crystallite) submodels. Using the model, we have performed a series of numerical experiments on simple and complex, monotonic and cyclic deformations of materials with different stacking fault energies, analyzed the evolution of defect densities, and analyzed the challenges of a relationship between the complexity of loading processes at a macrolevel and the activation of slip systems at low scale levels.This paper presents preliminary tests of the parameter analysis of the Fe/ZrC coatings production process and the obtained properties. The effects of laser beam power on the obtained microstructure, chemical composition and microhardness were investigated. The tests consisted of the production of composite coatings by laser processing of initial coatings made in the form of a paste on a steel substrate. During the tests, a diode laser with a rated power of 3 kW was used. The laser processing process was carried out using a constant scanning speed laser beam of 3 m/min and four different powers of the laser beam 500 W, 700 W, 900 W, 1100 W. It was found that it is possible to create composite coatings on a steel surface, where the matrix is made of iron-based alloy and the reinforcing phase is ZrC carbide. It was also found that reinforcing phase content decreased as laser beam power increased. A similar relationship was found for microhardness. As laser beam power increases, the microhardness of the iron-based matrix decreases, finally reaching a value lower than the heat-affected zone. It was found that the amount of hard carbide phases in the iron-based matrix affects the total hardness of the coatings. Presented study concern Fe/ZrC coatings that have not previously been produced on steel by laser processing of precoating, which may be a new contribution in the field of metal surface engineering.The number of fault samples for the new nuclear valve is commonly rare; thus, the machine learning algorithm is not suitable for the fault prediction of this kind of equipment. In order to overcome this difficulty, this paper proposes a novel method for the fault critical point prediction of the gate valve based on the characteristic analysis of the operation process variables. The operation process of gate valve switch often contains various fault characteristics and information, and this method first adopts the Shannon entropy to describe the power spectrum of vibration signal relevant to the operation process of gate valve switch, and then employs the mean value of the power spectrum entropy as an indirect process variable and further investigates the differences between the indirect process variable under the healthy state and the fault state with a different fault degree. In addition, the power signal of the gate valve is also employed as the direct process variable and the features of the direct processlves in other fields, such as the chemical industry.
Zirconia (Y-TZP) ceramics are considered as posterior fixed partial denture (FPD) materials; however, their applications are limited due to chipping. The use of monolithic lithium disilicate (LiDi) glass ceramics in posterior FPDs can be advantageous. This in vitro study aims to compare the loads until failure of posterior Y-TZP-FPDs and LiDi-FPDs before and after aging.
Zirconia (Y-TZP) ceramics are considered as posterior fixed partial denture (FPD) materials; however, their applications are limited due to chipping. The use of monolithic lithium disilicate (LiDi) glass ceramics in posterior FPDs can be advantageous. This in vitro study aims to compare the loads until failure of posterior Y-TZP-FPDs and LiDi-FPDs before and after aging.Fatigue crack growth (FCG) experiments were performed using a low-temperature extruded magnesium alloy AZ31 with texture. Under a constant maximum stress intensity factor (Kmax), the stress ratio R was changed from 0.1 to -1 during the fatigue crack growth process, and the FCG behavior before and after the R change was investigated. As a result, tensile twins were generated owing to the fatigue load on the compression side of R = -1, and the FCG velocity was accelerated. In addition, when the maximum compressive stress at R = -1 (|(σmin)R = -1|) exceeded the compressive yield strength of the material (σcy), the FCG velocity after R fluctuation greatly accelerated. On the other hand, under the condition |(σmin)R = -1| less then σcy, the degree of acceleration of the FCG velocity due to R fluctuation was small. In either case, the degree of acceleration in the FCG increased as the Kmax value increased. The above FCG acceleration mechanism due to the R fluctuation was considered based on the observation of the deformation and twinning states of the fatigue crack tip, the fatigue crack closure behavior, and the cyclic stress-strain curve of the fatigue process. The FCG acceleration mechanism was as follows First, the driving force of the FCG increased owing to the increase in crack opening displacement due to the generation of tensile twins. Second, the coalescence of the main crack and a plurality of microcracks were generated at the twin interface. The elasto-plastic FCG behavior after the stress ratio fluctuations is defined by the effective J-integral range ΔJeff.Molybdenum (Mo), which is one among the refractory metals, is a promising material with a wide variety of technological applications in microelectronics, optoelectronics, and energy conversion and storage. However, understanding the structure-property correlation and optimization at the nanoscale dimension is quite important to meet the requirements of the emerging nanoelectronics and nanophotonics. In this context, we focused our efforts to derive a comprehensive understanding of the nanoscale structure, phase, and electronic properties of nanocrystalline Mo films with variable microstructure and grain size. Molybdenum films were deposited under varying temperature (25-500 °C), which resulted in Mo films with variable grain size of 9-22 nm. The grazing incidence X-ray diffraction analyses indicate the (110) preferred growth behavior the Mo films, though there is a marked decrease in hardness and elastic modulus values. In particular, there is a sizable difference in maximum and minimum elastic modulus valuesy and conductive AFM studies allowed us to optimize the structure-property correlation in nanocrystalline Mo films for application in electronics and optoelectronics.High-speed steel (HSS) tools account for 20 percent of the cutting tools materials' global market. This is due to both their significant toughness and resistance to cracking, compared to cemented carbides. Covering steel tools with hard coatings clearly improves their mechanical properties, wear resistance, and significantly increases their durability. Physical vapor deposition methods are preferred for coating metal substrates, as they allow low temperature deposition. The most widely deposited coating materials are carbides, nitrides, and borides. They are combined with softer ones in the multilayer structure to promote increased resistance to cracking and delamination in comparison to monolayered structures. In this paper, the M2 steel end mills were coated by (TiBx/TiSiyCz) x3 multilayer by the pulsed laser deposition method. Coated and uncoated tools were tested in the cylindrical down milling of AISI 316L steel. Components of the cutting force and temperature generated in the machined area during dry milling were measured under two variants of operating conditions V1 and V2.