Gadegaardmartin0877

Z Iurium Wiki

Published by Elsevier Ltd.Achieving minimal residual disease (MRD) negativity in the bone marrow is one of the strongest prognostic factors in multiple myeloma. Consequently, MRD testing is routinely performed in clinical trials and moving towards standard of care. This review focuses on the role of next generation sequencing (NGS) of tumor-specific immunoglobulin V(D)J sequences for MRD tracking. The immunoglobulin variable regions are ideal targets for tracking, because every tumor cell shares an identical gene sequence, which is stable over time and generally distinct from the immunoglobulin sequences of normal B-cells. Several excellent assays for NGS-based MRD testing are available, both commercial and community-based, including one that is FDA-approved. These assays can achieve the gold standard analytical sensitivity of one tumor cell per million (10-6), requiring a minimum input of 3 million bone marrow cells. On-going clinical trials will outline how MRD testing should be used to inform dynamic risk-adopted therapy. Fluorine-18 (18F)-fluorodeoxyglucose (FDG) positron emission tomography (PET) allows evaluation of elevated glucose metabolism in malignancies. There has been increasing interest in FDG PET/CT for plasma cell disorders since the International Myeloma Working Group outlined multiple applications of this imaging modality, including distinguishing smoldering myeloma from active multiple myeloma, confirmation of solitary plasmacytoma, and multiple indications in patients with known multiple myeloma, including determining extent of initial disease, monitoring therapy response, and detection of residual disease following therapy. The field of molecular imaging is now shifting focus from evaluation of metabolism to targeted evaluation of specific tumor markers. Targeted PET imaging targeted of CXCR4 and CD38 has advanced into translational clinical trials, bringing us closer to powerful imaging options for myeloma. In this review we discuss the current applications of FDG PET/CT in plasma cell disorders, as well as advances in targeted PET imaging. Over the past years, the emergence of liquid biopsy technologies has dramatically expanded our ability to assess multiple myeloma without the need for invasive sampling. Interrogation of cell-free DNA from the peripheral blood recapitulates the mutational landscape at excellent concordance with matching bone marrow aspirates. It can quantify disease burden and identify previously undetected resistance mechanisms which may inform clinical management in real-time. The convenience of sample acquisition and storage provides strong procedural benefits over currently available testing. Further investigations will have to define the role of cell-free DNA as a diagnostic measure by determining clinically relevant tumor thresholds in comparison to existing routine parameters. This review presents an overview of currently available assays and discusses the clinical value, potential and limitations of cell-free DNA technologies for the assessment of this challenging disease. Multiple myeloma is the second most common lymphoproliferative disorder, characterized by aberrant expansion of monoclonal plasma cells. In the last years, thanks to novel next generation sequencing technologies, multiple myeloma has emerged as one of the most complex hematological cancers, shaped over time by the activity of multiple mutational processes and by the acquisition of key driver events. In this review, we describe how whole genome sequencing is emerging as a key technology to decipher this complexity at every stage of myeloma development precursors, diagnosis and relapsed/refractory. Defining the time windows when driver events are acquired improves our understanding of cancer etiology and paves the way for early diagnosis and ultimately prevention. The changing landscape of treatment options for multiple myeloma has led to a higher proportion of patients achieving deep, long-lasting responses to therapy. With the associated improvement in overall survival, the development of subsequent second malignancies has become of increased significance. The risk of second malignancy after multiple myeloma is affected by a combination of patient-, disease- and therapy-related risk factors. This review discusses recent data refining our knowledge of these contributing factors, including current treatment modalities which increase risk (i.e. high-dose melphalan with autologous stem cell transplant and lenalidomide maintenance therapy). We highlight emerging data towards individualized risk- and response-adapted treatment strategies and discuss key areas requiring future research. The recent development of monoclonal antibodies (mAbs) has revolutionized the treatment armamentarium for multiple myeloma. The success of daratumumab and elotuzumab in relapsed/refractory patients, has generated tremendous enthusiasm for mAbs in this disease. Combination treatment with other anti-myeloma treatment modalities and clinical evaluation in newly diagnosed patients are expected to fundamentally change the natural history of the disease. Advances in biopharmaceutical engineering together with a robust interest in novel mAb-derivatives, including antibody drug conjugates and poly-specific antibodies are the next rapidly approaching treatment frontier in multiple myeloma. In this review, we comprehensively outline the currently available evidence and the future landscape of mAbs and mAb-derivative therapies in multiple myeloma. Efforts over the last 5 years have demonstrated that it is technically feasible to detect low levels of monoclonal proteins in peripheral blood using mass spectrometry. These methods are based on the fact that an M-protein has a specific amino acid sequence, and therefore, a specific mass. This mass can be tracked over time and can serve as a surrogate marker of the presence of clonal plasma cells. This review describes the use of mass spectrometry to detect M-proteins in multiple myeloma to date, identifies the challenges of using this biomarker, and describes potential strategies to overcome these challenges. https://www.selleckchem.com/products/etc-1002.html We discuss the work that must be done for these techniques to be incorporated into clinical practice for tracking of low disease burden in multiple myeloma.

Autoři článku: Gadegaardmartin0877 (Strand Wiese)