Fyhncampbell3500

Z Iurium Wiki

Our findings suggest that a vast majority of Twitter users are not using JUUL to aid in smoking cessation nor do they mention the potential health benefits or detriments of JUUL use. Using machine learning algorithms to identify tweets containing underage JUUL mentions can support the timely surveillance of JUUL habits and opinions, further assisting youth-targeted public health intervention strategies.

Our findings suggest that a vast majority of Twitter users are not using JUUL to aid in smoking cessation nor do they mention the potential health benefits or detriments of JUUL use. Using machine learning algorithms to identify tweets containing underage JUUL mentions can support the timely surveillance of JUUL habits and opinions, further assisting youth-targeted public health intervention strategies.

At present, electronic health records (EHRs) are the central focus of clinical informatics given their role as the primary source of clinical data. Despite their granularity, the EHR data heavily rely on manual input and are prone to human errors. Many other sources of data exist in the clinical setting, including digital medical devices such as smart infusion pumps. When incorporated with prescribing data from EHRs, smart pump records (SPRs) are capable of shedding light on actions that take place during the medication use process. However, harmoniz-ing the 2 sources is hindered by multiple technical challenges, and the data quality and utility of SPRs have not been fully realized.

This study aims to evaluate the quality and utility of SPRs incorporated with EHR data in detecting medication administration errors. Our overarching hypothesis is that SPRs would contribute unique information in the med-ication use process, enabling more comprehensive detection of discrepancies and potential errors in medicat The findings suggested that SPRs could be a more reliable data source for medication error detection. Ultimately, it is imperative to integrate SPR information with EHR data to fully detect and mitigate medication administration errors in the clinical setting.

Digital interventions targeting common mental disorders (CMDs) or symptoms of CMDs are growing rapidly and gaining popularity, probably in response to the increased prevalence of CMDs and better awareness of early help-seeking and self-care. Semaxanib cell line However, no previous systematic reviews that focus on these novel interventions were found.

This systematic review aims to scope entirely web-based interventions that provided screening and signposting for treatment, including self-management strategies, for people with CMDs or subthreshold symptoms. In addition, a meta-analysis was conducted to evaluate the effectiveness of these interventions for mental well-being and mental health outcomes.

Ten electronic databases including MEDLINE, PsycINFO, and EMBASE were searched from January 1, 1999, to early April 2020. We included randomized controlled trials (RCTs) that evaluated a digital intervention (1) targeting adults with symptoms of CMDs, (2) providing both screening and signposting to other resources including sealysis and process evaluation to assess the mechanisms of action and cost-effectiveness to aid scaling of the implementation.

Digital mental health interventions to assess and signpost people experiencing symptoms of CMDs appear to be acceptable to a sufficient number of people and appear to have enough evidence for effectiveness to warrant further study. We recommend that future studies incorporate economic analysis and process evaluation to assess the mechanisms of action and cost-effectiveness to aid scaling of the implementation.

Managing type 2 diabetes (T2D) requires progressive lifestyle changes and, sometimes, pharmacological treatment intensification. General practitioners (GPs) are integral to this process but can find pharmacological treatment intensification challenging because of the complexity of continually emerging treatment options.

This study aimed to use a co-design method to develop and pretest a clinical decision support (CDS) tool prototype (GlycASSIST) embedded within an electronic medical record, which uses evidence-based guidelines to provide GPs and people with T2D with recommendations for setting glycated hemoglobin (HbA1c) targets and intensifying treatment together in real time in consultations.

The literature on T2D-related CDS tools informed the initial GlycASSIST design. A two-part co-design method was then used. Initial feedback was sought via interviews and focus groups with clinicians (4 GPs, 5 endocrinologists, and 3 diabetes educators) and 6 people with T2D. Following refinements, 8 GPs participaeing refined based on these findings to prepare for quantitative evaluation.

GlycASSIST was perceived to achieve its purpose of facilitating treatment intensification and was acceptable to people with T2D and GPs. The GlycASSIST prototype is being refined based on these findings to prepare for quantitative evaluation.

The role of emotion is crucial to the learning process, as it is linked to motivation, interest, and attention. Affective states are expressed in the brain and in overall biological activity. Biosignals, like heart rate (HR), electrodermal activity (EDA), and electroencephalography (EEG) are physiological expressions affected by emotional state. Analyzing these biosignal recordings can point to a person's emotional state. Contemporary medical education has progressed extensively towards diverse learning resources using virtual reality (VR) and mixed reality (MR) applications.

This paper aims to study the efficacy of wearable biosensors for affect detection in a learning process involving a serious game in the Microsoft HoloLens VR/MR platform.

A wearable array of sensors recording HR, EDA, and EEG signals was deployed during 2 educational activities conducted by 11 participants of diverse educational level (undergraduate, postgraduate, and specialist neurosurgeon doctors). The first scenario was a conventelligent tutoring systems for providing real-time, evidence-based, affective learning analytics using VR/MR-deployed medical education resources.

Autoři článku: Fyhncampbell3500 (Howell Emborg)