Frostmikkelsen8284

Z Iurium Wiki

Circular glyphs are used across disparate fields to represent multidimensional data. read more However, although these glyphs are extremely effective, creating them is often laborious, even for those with professional design skills. This paper presents GlyphCreator, an interactive tool for the example-based generation of circular glyphs. Given an example circular glyph and multidimensional input data, GlyphCreator promptly generates a list of design candidates, any of which can be edited to satisfy the requirements of a particular representation. To develop GlyphCreator, we first derive a design space of circular glyphs by summarizing relationships between different visual elements. With this design space, we build a circular glyph dataset and develop a deep learning model for glyph parsing. The model can deconstruct a circular glyph bitmap into a series of visual elements. Next, we introduce an interface that helps users bind the input data attributes to visual elements and customize visual styles. We evaluate the parsing model through a quantitative experiment, demonstrate the use of GlyphCreator through two use scenarios, and validate its effectiveness through user interviews.The combination of diverse data types and analysis tasks in genomics has resulted in the development of a wide range of visualization techniques and tools. However, most existing tools are tailored to a specific problem or data type and offer limited customization, making it challenging to optimize visualizations for new analysis tasks or datasets. To address this challenge, we designed Gosling-a grammar for interactive and scalable genomics data visualization. Gosling balances expressiveness for comprehensive multi-scale genomics data visualizations with accessibility for domain scientists. Our accompanying JavaScript toolkit called Gosling.js provides scalable and interactive rendering. Gosling.js is built on top of an existing platform for web-based genomics data visualization to further simplify the visualization of common genomics data formats. We demonstrate the expressiveness of the grammar through a variety of real-world examples. Furthermore, we show how Gosling supports the design of novel genomics visualizations. An online editor and examples of Gosling.js, its source code, and documentation are available at https//gosling.js.org.The spatial time series generated by city sensors allow us to observe urban phenomena like environmental pollution and traffic congestion at an unprecedented scale. However, recovering causal relations from these observations to explain the sources of urban phenomena remains a challenging task because these causal relations tend to be time-varying and demand proper time series partitioning for effective analyses. The prior approaches extract one causal graph given long-time observations, which cannot be directly applied to capturing, interpreting, and validating dynamic urban causality. This paper presents Compass, a novel visual analytics approach for in-depth analyses of the dynamic causality in urban time series. To develop Compass, we identify and address three challenges detecting urban causality, interpreting dynamic causal relations, and unveiling suspicious causal relations. First, multiple causal graphs over time among urban time series are obtained with a causal detection framework extended from the Granger causality test. Then, a dynamic causal graph visualization is designed to reveal the time-varying causal relations across these causal graphs and facilitate the exploration of the graphs along the time. Finally, a tailored multi-dimensional visualization is developed to support the identification of spurious causal relations, thereby improving the reliability of causal analyses. The effectiveness of Compass is evaluated with two case studies conducted on the real-world urban datasets, including the air pollution and traffic speed datasets, and positive feedback was received from domain experts.Building a visual overview of temporal event sequences with an optimal level-of-detail (i.e. simplified but informative) is an ongoing challenge - expecting the user to zoom into every important aspect of the overview can lead to missing insights. We propose a technique to build a multilevel overview of event sequences, whose granularity can be transformed across sequence clusters (vertical level-of-detail) or longitudinally (horizontal level-of-detail), using hierarchical aggregation and a novel cluster data representation Align-Score-Simplify. By default, the overview shows an optimal number of sequence clusters obtained through the average silhouette width metric - then users are able to explore alternative optimal sequence clusterings. The vertical level-of-detail of the overview changes along with the number of clusters, whilst the horizontal level-of-detail refers to the level of summarization applied to each cluster representation. The proposed technique has been implemented into a visualization system called Sequence Cluster Explorer (Sequen-C) that allows multilevel and detail-on-demand exploration through three coordinated views, and the inspection of data attributes at cluster, unique sequence, and individual sequence level. We present two case studies using real-world datasets in the healthcare domain CUREd and MIMIC-III; which demonstrate how the technique can aid users to obtain a summary of common and deviating pathways, and explore data attributes for selected patterns.Human biases impact the way people analyze data and make decisions. Recent work has shown that some visualization designs can better support cognitive processes and mitigate cognitive biases (i.e., errors that occur due to the use of mental "shortcuts"). In this work, we explore how visualizing a user's interaction history (i.e., which data points and attributes a user has interacted with) can be used to mitigate potential biases that drive decision making by promoting conscious reflection of one's analysis process. Given an interactive scatterplot-based visualization tool, we showed interaction history in real-time while exploring data (by coloring points in the scatterplot that the user has interacted with), and in a summative format after a decision has been made (by comparing the distribution of user interactions to the underlying distribution of the data). We conducted a series of in-lab experiments and a crowd-sourced experiment to evaluate the effectiveness of interaction history interventions toward mitigating bias. We contextualized this work in a political scenario in which participants were instructed to choose a committee of 10 fictitious politicians to review a recent bill passed in the U.S. state of Georgia banning abortion after 6 weeks, where things like gender bias or political party bias may drive one's analysis process. We demonstrate the generalizability of this approach by evaluating a second decision making scenario related to movies. Our results are inconclusive for the effectiveness of interaction history (henceforth referred to as interaction traces) toward mitigating biased decision making. However, we find some mixed support that interaction traces, particularly in a summative format, can increase awareness of potential unconscious biases.Tactic analysis is a major issue in badminton as the effective usage of tactics is the key to win. The tactic in badminton is defined as a sequence of consecutive strokes. Most existing methods use statistical models to find sequential patterns of strokes and apply 2D visualizations such as glyphs and statistical charts to explore and analyze the discovered patterns. However, in badminton, spatial information like the shuttle trajectory, which is inherently 3D, is the core of a tactic. The lack of sufficient spatial awareness in 2D visualizations largely limited the tactic analysis of badminton. In this work, we collaborate with domain experts to study the tactic analysis of badminton in a 3D environment and propose an immersive visual analytics system, TIVEE, to assist users in exploring and explaining badminton tactics from multi-levels. Users can first explore various tactics from the third-person perspective using an unfolded visual presentation of stroke sequences. By selecting a tactic of interest, users can turn to the first-person perspective to perceive the detailed kinematic characteristics and explain its effects on the game result. The effectiveness and usefulness of TIVEE are demonstrated by case studies and an expert interview.Vision-based deep learning (DL) methods have made great progress in learning autonomous driving models from large-scale crowdsourced video datasets. They are trained to predict instantaneous driving behaviors from video data captured by on-vehicle cameras. In this paper, we develop a geo-context aware visualization system for the study of Autonomous Driving Model (ADM) predictions together with large-scale ADM video data. The visual study is seamlessly integrated with the geographical environment by combining DL model performance with geospatial visualization techniques. Model performance measures can be studied together with a set of geospatial attributes over map views. Users can also discover and compare prediction behaviors of multiple DL models in both city-wide and street-level analysis, together with road images and video contents. Therefore, the system provides a new visual exploration platform for DL model designers in autonomous driving. Use cases and domain expert evaluation show the utility and effectiveness of the visualization system.Visualization collections, accessed by platforms such as Tableau Online or Power BI, are used by millions of people to share and access diverse analytical knowledge in the form of interactive visualization bundles. Result snippets, compact previews of these bundles, are presented to users to help them identify relevant content when browsing collections. Our engagement with Tableau product teams and review of existing snippet designs on five platforms showed us that current practices fail to help people judge the relevance of bundles because they include only the title and one image. Users frequently need to undertake the time-consuming endeavour of opening a bundle within its visualization system to examine its many views and dashboards. In response, we contribute the first systematic approach to visualization snippet design. We propose a framework for snippet design that addresses eight key challenges that we identify. We present a computational pipeline to compress the visual and textual content of bundles into representative previews that is adaptive to a provided pixel budget and provides high information density with multiple images and carefully chosen keywords. We also reflect on the method of visual inspection through random sampling to gain confidence in model and parameter choices.This paper presents a unified computational framework for the estimation of distances, geodesics and barycenters of merge trees. We extend recent work on the edit distance [104] and introduce a new metric, called the Wasserstein distance between merge trees, which is purposely designed to enable efficient computations of geodesics and barycenters. Specifically, our new distance is strictly equivalent to the L2-Wasserstein distance between extremum persistence diagrams, but it is restricted to a smaller solution space, namely, the space of rooted partial isomorphisms between branch decomposition trees. This enables a simple extension of existing optimization frameworks [110] for geodesics and barycenters from persistence diagrams to merge trees. We introduce a task-based algorithm which can be generically applied to distance, geodesic, barycenter or cluster computation. The task-based nature of our approach enables further accelerations with shared-memory parallelism. Extensive experiments on public ensembles and SciVis contest benchmarks demonstrate the efficiency of our approach - with barycenter computations in the orders of minutes for the largest examples - as well as its qualitative ability to generate representative barycenter merge trees, visually summarizing the features of interest found in the ensemble.

Autoři článku: Frostmikkelsen8284 (Cooper Jantzen)