Fraserkok4689

Z Iurium Wiki

Increased inflammation is the main pathophysiology of nonalcoholic fatty liver disease (NAFLD). Inflammation affects lymphatic vessel function that contributes to the removal of immune cells or macromolecules. Dysfunctional lymphatic vessels with decreased permeability are present in NAFLD. High-fat diet (HFD) is known to increase body weight, food intake, and inflammation in the liver. Previously, it was reported that Ecklonia cava extracts (ECE) decreased food intake or weight gain, and low-calorie diet and weight loss is known as a treatment for NAFLD. In this study, the effects of ECE and dieckol (DK)-which is one component of ECE that decreases inflammation and increases lymphangiogenesis and lymphatic drainage by controlling lymphatic permeability in high-fat diet (HFD)-fed mice-on weight gain and food intake were investigated. ECE and DK decreased weight gain and food intake in the HFD-fed mice. NAFLD activities such as steatosis, lobular inflammation, and ballooning were increased by HFD and attenuated by ECE and DK. The expression of inflammatory cytokines such as IL-6 and TNF-α and infiltration of M1 macrophages were increased by HFD, and they were decreased by ECE or DK. The signaling pathways of lymphangiogenesis, VEGFR-3, PI3K/pAKT, and pERK were decreased by HFD, and they were restored by either ECE or DK. The expression of VE-cadherin (which represents lymphatic junctional function) was increased by HFD, although it was restored by either ECE or DK. In conclusion, ECE and DK attenuated NAFLD by decreasing weight gain and food intake, decreasing inflammation, and increasing lymphangiogenesis, as well as modulating lymphatic vessel permeability.Tetrodotoxin (TTX) is a potent neurotoxin found in many marine and terrestrial animals, but only a few species, such as the ribbon worms of the genus Cephalothrix, accumulate it in extremely high concentrations. The intrabody distribution of TTX in highly toxic organisms is of great interest because it helps researchers to understand the pathways by which the toxin migrates, accumulates, and functions in tissues. Using immunohistochemistry with anti-TTX antibodies, the authors of this study investigated the toxin's distribution inside the organs, tissues, and cells of Cephalothrix cf. simula. The cell types of TTX-positive tissues were identified by light microscopy. The main sites of TTX accumulation occurred in the secretory cells of the integuments, the microvilli of the epidermal ciliary cells, cephalic glands, the glandular epithelia of the proboscises, the enterocytes of the digestive systems, and nephridia. Obtained data suggest the toxin migrates from the digestive system through blood vessels to target organs. TTX is excreted from the body through the nephridia and mucus of epidermal cells.The element stoichiometry of bacteria has received considerable attention because of their significant role in marine ecosystems. Odanacatib Cysteine Protease inhibitor However, relatively little is known about the composition of major structural elements of the unicellular heterotrophic protists-thraustochytrids, despite their widely recognized contribution to marine nutrient cycling. Here, we analyze the cell volume and elemental C, N, H, and S cell content of seven cultured thraustochytrids, isolated from different marine habitats, in the exponential and stationary growth phases. We further derive the relationships between the cell volume and elemental C and N content of the cultured thraustochytrids. The cell volumes varied significantly (p less then 0.001) among the isolates, with median values of 96.9 and 212.5 μm3 in the exponential and stationary phases, respectively. Our results showed a significantly higher percentage of C (64.0 to 67.5) and H (9.9 to 13.2) but a lower percentage of N (1.86 to 2.16) and S (0.34 to 0.91) in the stationary phase, along with marked variations of C and N fractions among isolates in the exponential phase. The cell C (5.7 to 203.7 pg) and N (0.65 to 6.1 pg) content exhibited a significant (p less then 0.001) linear relationship with the cell volume (27.7 to 510 μm3). On further analysis of the relationship across the two growth phases, we found the equation (cell C (pg) = 0.356 × cell volume (μm3) + 20.922) for stationary phase cells more appropriate for C estimation of natural thraustochytrids. This study provides the first experimental evidence of higher cell C density than the current estimate and relatively larger C contribution of thraustochytrids than bacteria to the marine organic pool.Eight new compounds, including two sambutoxin derivatives (1-2), two highly oxygenated cyclopentenones (7-8), four highly oxygenated cyclohexenones (9-12), together with four known sambutoxin derivatives (3-6), were isolated from semimangrove endophytic fungus Talaromyces sp. CY-3, under the guidance of molecular networking. The structures of new isolates were elucidated by analysis of detailed spectroscopic data, ECD spectra, chemical hydrolysis, 13C NMR calculation, and DP4+ analysis. In bioassays, compounds 1-5 displayed better α-glucosidase inhibitory activity than the positive control 1-deoxynojirimycin (IC50 = 80.8 ± 0.3 μM), and the IC50 value was in the range of 12.6 ± 0.9 to 57.3 ± 1.3 μM.Rising trends in fish filleting are increasing the amount of processing by-products, such as skins of turbot, a flatfish of high commercial value. In line with circular economy principles, we propose the valorization of turbot skins through a two-step process initial gelatin extraction described for the first time in turbot, followed by hydrolysis of the remaining solids to produce collagen hydrolysates. We assayed several methods for gelatin extraction, finding differences in gelatin properties depending on chemical treatment and temperature. Of all methods, the application of NaOH, sulfuric, and citric acids at 22 °C results in the highest gel strength (177 g), storage and loss moduli, and gel stability. We found no relation between mechanical properties and content of pyrrolidine amino acids, but the best performing gelatin displays higher structural integrity, with less than 30% of the material below 100 kDa. Collagen hydrolysis was more efficient with papain than alcalase, leading to a greater reduction in Mw of the hydrolysates, which contain a higher proportion of essential amino acids than gelatin and show high in vitro anti-hypertensive activity. These results highlight the suitability of turbot skin by-products as a source of gelatin and the potential of collagen hydrolysates as a functional food and feed ingredient.Antimicrobial peptides (AMPs) participate in the immune system to avoid infection, are present in all living organisms and can be used as drugs. Fish express numerous AMP families including defensins, cathelicidins, liver-expressed antimicrobial peptides (LEAPs), histone-derived peptides, and piscidins (a fish-specific AMP family). The present study demonstrates for the first time the occurrence of several AMPs in lionfish (Pterois volitans). Using the lionfish transcriptome, we identified four transcript sequences encoding cysteine-rich AMPs and two new transcripts encoding piscidin-like peptides. These AMPs are described for the first time in a species of the Scorpaenidae family. A functional approach on new pteroicidins was carried out to determine antimicrobial sequences and potential uses, with a view to using some of these AMPs for human health or in aquaculture.Myeloid leukemia is a hematologic neoplasia characterized by a clonal proliferation of hematopoietic stem cell progenitors. Patient prognosis varies depending on the subtype of leukemia as well as eligibility for intensive treatment regimens and allogeneic stem cell transplantation. Although significant progress has been made in the therapy of patients including novel targeted treatment approaches, there is still an urgent need to optimize treatment outcome. The most common therapy is based on the use of chemotherapeutics cytarabine and anthrayclines. Here, we studied the effect of the recently synthesized marine alkaloid 3,10-dibromofascaplysin (DBF) in myeloid leukemia cells. Unsubstituted fascaplysin was early found to affect cell cycle via inhibiting CDK4/6, thus we compared the activity of DBF and other brominated derivatives with known CDK4/6 inhibitor palbociclib, which was earlier shown to be a promising candidate to treat leukemia. Unexpectedly, the effect DBF on cell cycle differs from palbociclib. In fact, DBF induced leukemic cells apoptosis and decreased the expression of genes responsible for cancer cell survival. Simultaneously, DBF was found to activate the E2F1 transcription factor. Using bioinformatical approaches we evaluated the possible molecular mechanisms, which may be associated with DBF-induced activation of E2F1. Finally, we found that DBF synergistically increase the cytotoxic effect of cytarabine in different myeloid leukemia cell lines. In conclusion, DBF is a promising drug candidate, which may be used in combinational therapeutics approaches to reduce leukemia cell growth.Worldwide, 19.3 million new cancer cases and almost 10.0 million cancer deaths occur each year. Recently, much attention has been paid to the ocean, the largest biosphere of the earth that harbors a great many different organisms and natural products, to identify novel drugs and drug candidates to fight against malignant neoplasms. The marine compounds show potent anticancer activity in vitro and in vivo, and relatively few drugs have been approved by the U.S. Food and Drug Administration for the treatment of metastatic malignant lymphoma, breast cancer, or Hodgkin's disease. This review provides a summary of the anticancer effects and mechanisms of action of selected marine compounds, including cytarabine, eribulin, marizomib, plitidepsin, trabectedin, zalypsis, adcetris, and OKI-179. The future development of anticancer marine drugs requires innovative biochemical biology approaches and introduction of novel therapeutic targets, as well as efficient isolation and synthesis of marine-derived natural compounds and derivatives.Fucosylated glycosaminoglycan (FG) from sea cucumber is a potent anticoagulant by inhibiting intrinsic coagulation tenase (iXase). However, high-molecular-weight FGs can activate platelets and plasma contact system, and induce hypotension in rats, which limits its application. Herein, we found that FG from T. ananas (TaFG) and FG from H. fuscopunctata (HfFG) at 4.0 mg/kg (i.v.) could cause significant cardiovascular and respiratory dysfunction in rats, even lethality, while their depolymerized products had no obvious side effects. After injection, native FG increased rat plasma kallikrein activity and levels of the vasoactive peptide bradykinin (BK), consistent with their contact activation activity, which was assumed to be the cause of hypotension in rats. However, the hemodynamic effects of native FG cannot be prevented by the BK receptor antagonist. Further study showed that native FG induced in vivo procoagulation, thrombocytopenia, and pulmonary embolism. Additionally, its lethal effect could be prevented by anticoagulant combined with antiplatelet drugs. In summary, the acute toxicity of native FG is mainly ascribed to pulmonary microvessel embolism due to platelet aggregation and contact activation-mediated coagulation, while depolymerized FG is a safe anticoagulant candidate by selectively targeting iXase.

Autoři článku: Fraserkok4689 (Nixon Wynn)