Feldmanjordan6490
The placenta is a transient organ that mediates the exchange of nutrients, gases, and waste products between the mother and the developing fetus and is indispensable for a healthy pregnancy. Epithelial cells in the placenta, which are termed trophoblasts, originate from the trophectoderm (TE) compartment of the blastocyst. The human trophoblast lineage consists of several distinct cell types, including the self-renewing and bipotent cytotrophoblast and the terminally differentiated extravillous trophoblast and syncytiotrophoblast. Despite the importance of trophoblast research, it has long been hindered by the scarce accessibility of primary tissue and the lack of a robust in vitro model system. Recently, a culture condition was developed that supports the isolation of bona fide human trophoblast stem cells (hTSCs) from human blastocysts or first-trimester placental tissues. In this chapter, we describe a protocol to derive bona fide hTSCs from naïve human pluripotent stem cells (hPSCs), thus presenting a robust methodology to generate hTSCs from a renewable and widely accessible source. This approach may be used to generate patient-specific hTSCs to study trophoblast-associated pathologies and serves as a powerful experimental platform to study the specification of human TE.Naïve pluripotent stem cells are the in vitro counterparts of pre-implantation embryonic epiblast. During the last few years, several protocols for establishing and maintaining human pluripotent stem cells (hPSCs) with naïve features have been reported, and many of these protocols result in cell populations with different molecular characteristics. find more As such, choosing the most appropriate method for naïve hPSC maintenance can pose a significant challenge. This chapter presents an optimized system called PXGL for culturing naïve hPSCs. Naïve hPSCs robustly self-renew while retaining a normal karyotype in PXGL, and the protocol is reproducible across different cell lines and independent laboratories.Human induced pluripotent stem cells (iPSCs) are generated from somatic cells by the expression of a cocktail of transcription factors, and iPSCs have the capacity to generate in vitro all cell types of the human body. In addition to primed (conventional) iPSCs, several groups recently reported the generation of human naïve iPSCs, which are in a more primitive developmental state and have a broader developmental potential, as shown by their ability to form cells of the placenta. Human iPSCs have broad medical potential but their generation is often time-consuming, not scalable and requires viral vectors or stable genetic manipulations. To overcome such limitations, we developed protocols for high-efficiency generation of either conventional or naïve iPSCs by delivery of messenger RNAs (mRNAs) using a microfluidic system. In this protocol we describe how to produce microfluidic devices, and how to reprogram human somatic cells into naïve and primed iPSCs using these devices. We also describe how to transfer the iPSC colonies from the microfluidic devices over to standard multiwell plates for subsequent expansion of the cultures. Our approach does not require stable genetic modifications, is reproducible and cost-effective, allowing to produce patient-specific iPSCs for cell therapy, disease modeling, and in vitro developmental studies.Generating patient-specific stem cells representing the onset of development has become possible since the discovery of somatic cell reprogramming into induced pluripotent stem cells. However, human pluripotent stem cells are generally cultured in a primed pluripotent state they are poised for differentiation and represent a stage of development corresponding to post-implantation epiblast. Here, we describe a protocol to reprogram human fibroblasts into naive pluripotent stem cells by overexpressing the transcription factors OCT4, SOX2, KLF4, and c-MYC using Sendai viruses. The resulting cells represent an earlier stage of development that corresponds to pre-implantation epiblast. We also discuss validation methods for human naive pluripotent stem cells.Human pluripotent stem cells exist in naïve and primed states that recapitulate the distinct molecular and cellular properties of pre- and post-implantation epiblast cells, respectively. Naïve pluripotent stem cells can be captured directly from blastocysts but, more commonly, the cells are reprogrammed from primed cells in a process called "resetting". Several methods to achieve resetting have been described. Chemical resetting of primed cells to a naïve pluripotent state is one such method and has come to the forefront as a simple, efficient, and transgene-free method to induce naïve pluripotency. The process involves the transient application of a histone deacetylase inhibitor to initiate resetting, followed by the emergence of nascent naïve pluripotent stem cells in supportive conditions, and finally the stabilization and expansion of naïve pluripotent stem cell cultures. Here, a detailed protocol is provided for chemical resetting starting from plating primed cells until a stable culture of naïve pluripotent stem cells is established.Prior to implantation, the cells in the mammalian epiblast constitute a naïve pluripotent state, which is distinguished by absence of lineage priming, freedom from epigenetic restriction, and expression of a unique set of transcription factors. However, human embryonic stem cells (hESCs) derived under conventional conditions have exited this naïve state and acquired a more advanced "primed" pluripotent state that corresponds to the post-implantation epiblast. We have developed a cocktail comprising five kinase inhibitors and two growth factors (5i/L/A) that enables induction of defining features of naïve pluripotency in primed hESCs. These conditions can also be applied to induce naïve pluripotency in patient-specific induced pluripotent stem cells (iPSCs). Here, we provide a detailed protocol for inducing naïve pluripotency in primed hESCs and iPSCs and methods for the routine validation of naïve identity. We also outline the use of two fluorescent reporter systems to track acquisition of naïve identity in live cells (a) a GFP reporter linked to an endogenous OCT4 allele in which the primed-specific proximal enhancer has been deleted (OCT4-ΔPE-GFP); and (b) a dual-color reporter system targeted to both alleles of an X-linked gene that reports on the status of the X chromosome in female cells (MECP2-GFP/tdTomato). The conditions described herein have given insight into various aspects of naïve human pluripotent stem cells (hPSCs), including their unique transposon transcription profile, X chromosome status, and extraembryonic potential.Until recently, naïve pluripotent stem cell lines were not captured from human embryos because protocols were based upon those devised for murine embryonic stem cells. In contrast with early lineage segregation in mouse embryos, human hypoblast specification is not solely dependent upon FGF signaling; consequently, its maturation during embryo explant culture may provide inductive signals to drive differentiation of the epiblast. To overcome this potential risk, here we describe how cells of the immature inner cell mass of human embryos can be physically separated during derivation, achieved via "immunosurgery", to eliminate the trophectoderm, followed by disaggregation of the remaining inner cell mass cells. A modification of a culture regime developed for propagation of human pluripotent stem cells reset to the naïve state is used, which comprises serum-free medium supplemented with various inhibitors of signaling pathways, polarization, and differentiation. Colonies arising from the first plating of an inner cell mass may be pooled for ease of handling, or propagated separately to allow establishment of clonal human naïve embryonic stem cell lines.
During an ICU stay, changes in muscles and nerves occur that is accessible via neuromuscular sonography.
17 patients recruited from the neurological and neurosurgical ICU (six women; 66 ± 3years) and 7 healthy controls (three women, 75 ± 3years) were included. Muscle sonography (rectus abdominis, biceps, rectus femoris and tibialis anterior muscles) using gray-scale values (GSVs), and nerve ultrasound (peroneal, tibial and sural nerves) analyzing the cross-sectional area (CSA) were performed on days 1 (t1), 3 (t2), 5 (t3), 8 (t4), and 16 (t5) after admission.
Time course analysis revealed that GSVs were significantly higher within the patient group for all of the investigated muscles (rectus abdominis F = 7.536; p = 0.011; biceps F = 14.761; p = 0.001; rectus femoris F = 9.455; p = 0.005; tibialis anterior F = 7.282; p = 0.012). The higher GSVs were already visible at t1 or, at the latest, at t2 (tibialis anterior muscles). CSA was enlarged in all of the investigated nerves in the patient group (peroneal nerve F = 7.129; p = 0.014; tibial nerve F = 28.976, p < 0.001; sural nerve F = 13.051; p = 0.001). The changes were visible very early (tibial nerve t1; peroneal nerve t2). The CSA of the motor nerves showed an association with the ventilation time and days within the ICU (t1 through t4; p < 0.05).
We detected very early changes in the muscles and nerves of ICU-patients. Nerve CSA might be a useful parameter to identify patients who are at risk for difficult weaning. Therefore our observations might be severity signs of neuromuscular suffering for the most severe patients.
We detected very early changes in the muscles and nerves of ICU-patients. Nerve CSA might be a useful parameter to identify patients who are at risk for difficult weaning. Therefore our observations might be severity signs of neuromuscular suffering for the most severe patients.Fetal thymic organ culture (FTOC) provides a method for analyzing T cell development in a physiological context outside the animal. This technique enables studies of genetically altered mice that are embryonic or neonatal lethal, in addition to bypassing the complication of migration of successive waves of T cells out of the thymus. The hanging drop method involves depletion of thymocytes from host lobes using deoxyguanosine, followed by reconstitution with hematopoietic progenitors. This method has become standard for analysis of fetal liver precursors, bone marrow precursors, and early thymocytes. However, difficulties are encountered in the analysis of γδ T cell precursors using this method. We have developed a modification of FTOC in which partial depletion of hematopoietic precursors by shortened deoxyguanosine treatment, coupled with the use of TCRδ-deficient host lobes, enables engraftment and development of fetal γδTCR+ thymocytes. This method allows comparisons of development and functional differentiation of γδ T cell precursors between cells of different genotypes or treatments, in the context of a permissive thymic microenvironment.Repertoire sequencing of B cells is the high-throughput profiling of B cell receptors (BCR) expressed on the surface of B cells and of immunoglobulins (Ig) expressed by antibody secreting cells. Each BCR/Ig transcript has a unique complementarity-determining region 3 (CDR3) sequence that can be used to identify and track individual B cell lymphocytes over time and throughout different compartments of the human body. B cell differentiation can be further tracked by assessing the point mutations acquired during affinity maturation via somatic hypermutation (SHM). Here we describe a method for high-throughput sequencing of the variable region of Ig heavy-chain transcripts for repertoire analysis of human B cells on the Illumina Miseq platform.