Espensenmathiassen2999

Z Iurium Wiki

Besides, FO significantly improved the morphology of neurons in the hippocampus and cortex of diabetic rats and reduced the neuronal nuclear condensation. Moreover, FO decreased the mRNA expression of IL-1β, IL -6, and TNF-α and increased the mRNA expression of IL-4 and IL-10 in the cortex and hippocampus. FO also attenuated the brain inflammatory cascade and simultaneously reduced diabetes-induced oxidative stress. In addition, FO increased the protein expression of Nrf2 and HO-1 in cortex and hippocampus of diabetic rats. These results provide a novel horizon for the study of neuroprotective effect of FO and further clarify the connections among inflammation, oxidative stress and diabetes-induced cognitive impairment.The poor prognosis of hepatocellular carcinoma (HCC) is primarily attributed to its high frequency of recurrence and resistance to chemotherapy. Epithelial-to-mesenchymal transition (EMT) and the acquisition of cancer stem cells (CSCs) are the fundamental drivers of chemoresistance in HCC. Glycochenodeoxycholic acid (GCDC), a component of bile acid (BA), has been reported to induce necrosis in primary human hepatocytes. In the present work, we investigated the function of GCDC in HCC chemoresistance. We found that GCDC promoted chemoresistance in HCC cells by down-regulating and up-regulating the expression of apoptotic and anti-apoptotic genes, respectively. Furthermore, GCDC induced the EMT phenotype and stemness in HCC cells and activated the STAT3 signaling pathway. These findings reveal that GCDC promotes chemoresistance in HCC by inducing stemness via the STAT3 pathway and could be a potential target in HCC chemotherapy.Mining disease-related genes contributes momentously to handling lung adenocarcinoma (LUAD). But genetic complexity and tumor heterogeneity severely get in the way. Fortunately, new light has been shed by dramatic progress of bioinformatic technology in the past decades. In this research, we investigated relationships between gene expression and clinical features of LUAD via integrative bioinformatic analysis. First, we applied limma and DESeq2 packages to analyze differentially expressed genes (DEGs) of LUAD from GEO database and TCGA project (tumor tissues versus normal tissues), and acquired 180 down-regulated DEGs and 52 up-regulated DEGs. Then, we investigated genetic and biological assignment of theses DEGs by Bioconductor packages and STRING database. We found these DEGs were distributed dispersedly among chromosomes, enriched observably in extracellular matrix-related processes, and weighted hierarchically in interaction network. Finally, we established DEGs-based statistical models for evaluating TNM stage and survival status of LUAD. And these models (logistic regression models for TNM parameter and Cox regression models for survival probability) all possessed fine predictive efficacy (C-indexes T, 0.740; N, 0.687; M, 0.823; overall survival, 0.678; progression-free survival, 0.611). In summary, we have successfully established gene expression-based models for assessing clinical characteristics of LUAD, which will assist its pathogenesis investigation and clinical intervention.A 9-day infusion of leucine into fetal sheep potentiates fetal glucose-stimulated insulin secretion (GSIS). However, there were accompanying pancreatic structural changes that included a larger proportion of β-cells and increased vascularity. Whether leucine can acutely potentiate fetal GSIS in vivo before these structural changes develop is unknown. The mechanisms by which leucine acutely potentiates GSIS in adult islets and insulin-secreting cell lines are well known. These mechanisms involve leucine metabolism, including leucine oxidation. However, it is not clear if leucine-stimulated metabolic pathways are active in fetal islets. We hypothesized that leucine would acutely potentiate GSIS in fetal sheep and that isolated fetal islets are capable of oxidizing leucine. We also hypothesized that leucine would stimulate other metabolic pathways associated with insulin secretion. In pregnant sheep we tested in vivo GSIS with and without an acute leucine infusion. In isolated fetal sheep islets, we measured leucine oxidation with a [1-14C] l-leucine tracer. We also measured concentrations of other amino acids, glucose, and analytes associated with cellular metabolism following incubation of fetal islets with leucine. In vivo, a leucine infusion resulted in glucose-stimulated insulin concentrations that were over 50% higher than controls (P less then 0.05). Isolated fetal islets oxidized leucine. Leucine supplementation of isolated fetal islets also resulted in significant activation of metabolic pathways involving leucine and other amino acids. In summary, acute leucine supplementation potentiates fetal GSIS in vivo, likely through pathways related to the oxidation of leucine and catabolism of other amino acids.White adipose tissue (WAT) browning may have beneficial effects for treating metabolic syndrome. miRNA are important regulators of the differentiation, development, and function of brown and beige adipocytes. Here, we found that the cold-inducible miRNA17-92 cluster is enriched in brown adipose tissue (BAT) compared with WAT. Overexpression of the miR17-92 cluster in C3H10T1/2 cells, a mouse mesenchymal stem cell line, enhanced the thermogenic capacity of adipocytes. Furthermore, we observed a significant reduction in adiposity in adipose tissue-specific miR17-92 cluster transgenic (TG) mice. This finding is partly explained by dramatic increases in white fat browning and energy expenditure. Interestingly, the miR17-92 cluster stimulated WAT browning without altering BAT activity in mice. In addition, when we removed the intrascapular BAT (iBAT), the TG mice could maintain their body temperature well under cold exposure. At the molecular level, we found that the miR17-92 cluster targets Rb1, a beige cell repressor in WAT. learn more The present study reveals a critical role for the miR17-92 cluster in regulating WAT browning. These results may be helpful for better understanding the function of beige fat, which could compensate for the lack of BAT in humans, and may open new avenues for combatting metabolic syndrome.

Autoři článku: Espensenmathiassen2999 (Craft Martinez)