Englishodgaard6191
Optical Coherence Tomography (OCT) is increasingly used in endoluminal procedures since it provides high-speed and high resolution imaging. Distortion and instability of images obtained with a proximal scanning endoscopic OCT system are significant due to the motor rotation irregularity, the friction between the rotating probe and outer sheath and synchronization issues. On-line compensation of artefacts is essential to ensure image quality suitable for real-time assistance during diagnosis or minimally invasive treatment. In this paper, we propose a new online correction method to tackle both B-scan distortion, video stream shaking and drift problem of endoscopic OCT linked to A-line level image shifting. The proposed computational approach for OCT scanning video correction integrates a Convolutional Neural Network (CNN) to improve the estimation of azimuthal shifting of each A-line. To suppress the accumulative error of integral estimation we also introduce another CNN branch to estimate a dynamic overall orientation angle. We train the network with semi-synthetic OCT videos by intentionally adding rotational distortion into real OCT scanning images. The results show that networks trained on this semi-synthetic data generalize to stabilize real OCT videos, and the algorithm efficacy is demonstrated on both ex vivo and in vivo data, where strong scanning artifacts are successfully corrected.Developing accurate and real-time algorithms for a non-invasive three-dimensional representation and reconstruction of internal patient structures is one of the main research fields in computer-assisted surgery and endoscopy. Mono and stereo endoscopic images of soft tissues are converted into a three-dimensional representation by the estimation of depth maps. However, automatic, detailed, accurate and robust depth map estimation is a challenging problem that, in the stereo setting, is strictly dependent on a robust estimate of the disparity map. Many traditional algorithms are often inefficient or not accurate. In this work, novel self-supervised stacked and Siamese encoder/decoder neural networks are proposed to compute accurate disparity maps for 3D laparoscopy depth estimation. These networks run in real-time on standard GPU-equipped desktop computers and the outputs may be used for depth map estimation using the a known camera calibration. We compare performance on three different public datasets and on a new challenging simulated dataset and our solutions outperform state-of-the-art mono and stereo depth estimation methods. Extensive robustness and sensitivity analyses on more than 30000 frames has been performed. This work leads to important improvements in mono and stereo real-time depth map estimation of soft tissues and organs with a very low average mean absolute disparity reconstruction error with respect to ground truth.The instrumentation of spinal fusion surgeries includes pedicle screw placement and rod implantation. While several surgical navigation approaches have been proposed for pedicle screw placement, less attention has been devoted towards the guidance of patient-specific adaptation of the rod implant. We propose a marker-free and intuitive Augmented Reality (AR) approach to navigate the bending process required for rod implantation. A stereo neural network is trained from the stereo video streams of the Microsoft HoloLens in an end-to-end fashion to determine the location of corresponding pedicle screw heads. From the digitized screw head positions, the optimal rod shape is calculated, translated into a set of bending parameters, and used for guiding the surgeon with a novel navigation approach. In the AR-based navigation, the surgeon is guided step-by-step in the use of the surgical tools to achieve an optimal result. We have evaluated the performance of our method on human cadavers against two benchmark methods, namely conventional freehand bending and marker-based bending navigation in terms of bending time and rebending maneuvers. We achieved an average bending time of 231s with 0.6 rebending maneuvers per rod compared to 476s (3.5 rebendings) and 348s (1.1 rebendings) obtained by our freehand and marker-based benchmarks, respectively.The essential trace element selenium (Se) is of central importance for human health and particularly for a regular functioning of the immune system. In the context of the current pandemic, Se deficiency in patients with COVID-19 correlated with disease severity and mortality risk. Selenium has been reported to be associated with the immune response following vaccination, but it is unknown whether this also applies to SARS-CoV-2 vaccines. In this observational study, adult health care workers (n = 126) who received two consecutive anti-SARS-CoV-2 vaccinations by BNT162b2 were followed for up to 24 weeks, with blood samples collected at the first and second dose and at three and 21 weeks after the second dose. Serum SARS-CoV-2 IgG titres, neutralising antibody potency, total Se and selenoprotein P concentrations, and glutathione peroxidase 3 activity were quantified. All three biomarkers of Se status were significantly correlated at all the time points, and participants who reported supplemental Se intake displayed higher Se concentrations. SARS-CoV-2 IgG titres and neutralising potency were highest three weeks after the second dose and decreased towards the last sampling point. The humoral immune response was not related to any of the three Se status biomarkers. this website Supplemental Se intake had no effect at any time point on the vaccination response as measured by serum SARS-CoV-2 IgG levels or neutralising potency. Overall, no association was found between Se status or supplemental Se intake and humoral immune response to COVID-19 mRNA vaccination.We present the preparation and physicochemical properties of thermally induced emulsion gels of a soy protein isolate-whey protein isolate (SPI-WPI)/calcium chloride composite, and the analysis of their nutrient release behaviors using fat-soluble vitamin E as a model system by simulating its digestion in vitro. In general, the SPI-WPI composite emulsion gel was found to have better water-holding capacity and texture than the emulsion gels formed by the single protein. The microstructure and rheological properties of the gel suggested that the CaCl2 concentration significantly influences the fundamental structure and mechanical properties of the SPI-WPI gel. The in vitro digestion experiments revealed that the mixed protein emulsion gel improves the bioavailability of vitamin E. This study is of great significance in the utilization of these natural emulsifiers, as they can be used in the development of emulsion delivery systems for lipophilic nutrients and other health products.
The integration of somatosensory, ocular motor and vestibular signals is necessary for self-location in space and goal-directed action. We aimed to detect remote changes in the cerebral cortex after thalamic infarcts to reveal the thalamo-cortical connections necessary for multisensory processing and ocular motor control.
Thirteen patients with unilateral ischemic thalamic infarcts presenting with vestibular, somatosensory, and ocular motor symptoms were examined longitudinally in the acute phase and after six months. Voxel- and surface-based morphometry were used to detect changes in vestibular and multisensory cortical areas and known hubs of central ocular motor processing. The results were compared with functional connectivity data in 50 healthy volunteers.
Patients with paramedian infarcts showed impaired saccades and vestibular perception, i.e., tilts of the subjective visual vertical (SVV). The most common complaint in these patients was double vision or vertigo / dizziness. Posterolateral thalamr motor processing. Changes in the cortical geometry seem not to reflect gray matter atrophy but rather reshaping of the cortical surface due to the underlying white matter atrophy.
White matter volume loss after thalamic infarcts reflects sensory input from the brainstem as well the cortical projections of the main affected nuclei for sensory and ocular motor processing. Changes in the cortical geometry seem not to reflect gray matter atrophy but rather reshaping of the cortical surface due to the underlying white matter atrophy.Tofacitinib (TFT), a JAK inhibitor used for the treatment of rheumatoid arthritis and other diseases, is associated with severe liver injury that is believed to be caused by its reactive aldehyde or epoxide metabolites. In this study, we synthesized six tofacitinib analogs designed to avoid the formation of reactive metabolites and evaluated their JAK3 inhibitory activity, metabolic stability, CYP3A time-dependent inhibition, and cytotoxicity. Our data indicated that purine analog 3, which showed little inhibition of CYP3A and cytotoxicity and inhibited JAK3 in the nanomolar range, could be a safer drug candidate than TFT. In addition, the results of the bioactivation study using TFT and its analogs suggest that the epoxide metabolite might contribute to TFT-induced CYP3A4 mechanism-based inhibition and hepatic toxicity.Erythrocyte membrane-incorporated phosphatidylethanol (PEth) forms only in the presence of ethanol and, once formed, provides a persisting marker for historical alcohol consumption. Relationships between PEth concentration, extent of consumption and time from consumption are under investigation. Threshold values of PEth have been proposed as indicators for any, or for harmful alcohol consumption. Here, we describe an assay for erythrocyte PEth 160/181 that offers the efficiency needed for routine clinical deployment, in the context of a fully validated methodology. However, we observe that conventional procedures for validating assay methodology are insufficient where the analyte of interest, membrane-incorporated PEth 160/181, has different physicochemical properties to the soluble PEth 160/181 and PEth 160/181-d5 that are used for making calibrator, controls and internal standards. Whereas the internal standard did fully correct for differences in matrix effects and recovery when different extraction solvents were applied to calibrators and controls (in soluble form), it failed to correct for a 1.5-fold difference in the relative efficiency of two solvents, in this case, acetonitrile and isopropanol in extracting PEth from erythrocyte membrane in clinical samples. Differences in the efficiency of the extraction of membrane-bound PEth translate to different results from the same specimen. That can mean that threshold values derived by one methodology cannot be safely generalised to another. That hampers the generalisability of individual laboratory's experience with PEth assay results. Harmonising extraction methodology between laboratories becomes very important where membrane-incorporated PEth itself remains unavailable as an assay standard.The clustered regularly interspaced short palindromic repeats-CRISPR associated protein9 (CRISPR-Cas9) system, which includes a single guide RNA (sgRNA) and a Cas9 protein, is an emerging and promising gene editing technology that produces specific changes, including insertions, deletions, or substitutions, in desired targets. This approach can be applied in novel therapeutic areas for multiple cancers and genetic diseases, including Parkinson's disease, sickle cell disease, and muscular dystrophy. However, there are many limitations to its potential application to therapeutics. CRISPR-Cas9 activity without side effects, delivery of CRISPR-Cas9 to the target cell within the desired tissue including liver, lungs, brain and muscle and the expression of Cas9 endonuclease in the target cell are key factors in achieving therapeutic efficacy. Generally, single-stranded RNA is immediately degraded in cells and biological fluids such as serum, as chemically unmodified single-stranded RNA shows extremely poor stability against nuclease degradation.