Engberghodges1981

Z Iurium Wiki

The cytoskeleton and its associated proteins present at the plasma membrane not only determine the cell shape but also modulate important aspects of cell physiology such as intracellular transport including secretory and endocytic pathways. Continuous remodeling of the cell structure and intense communication with extracellular environment heavily depend on interactions between cytoskeletal elements and plasma membrane. selleck products This review focuses on the plasma membrane-cytoskeleton interface in neurons, with a special emphasis on the axon and nerve endings. We discuss the interaction between the cytoskeleton and membrane mainly in two emerging topics of neurobiology (i) production and release of extracellular vesicles and (ii) local synthesis of new proteins at the synapses upon signaling cues. Both of these events contribute to synaptic plasticity. Our review provides new insights into the physiological and pathological significance of the cytoskeleton-membrane interface in the nervous system.Target tracking technology that is based on aerial videos is widely used in many fields; however, this technology has challenges, such as image jitter, target blur, high data dimensionality, and large changes in the target scale. In this paper, the research status of aerial video tracking and the characteristics, background complexity and tracking diversity of aerial video targets are summarized. Based on the findings, the key technologies that are related to tracking are elaborated according to the target type, number of targets and applicable scene system. The tracking algorithms are classified according to the type of target, and the target tracking algorithms that are based on deep learning are classified according to the network structure. Commonly used aerial photography datasets are described, and the accuracies of commonly used target tracking methods are evaluated in an aerial photography dataset, namely, UAV123, and a long-video dataset, namely, UAV20L. Potential problems are discussed, and possible future research directions and corresponding development trends in this field are analyzed and summarized.Deep learning models are widely employed in hyperspectral image processing to integrate both spatial features and spectral features, but the correlations between them are rarely taken into consideration. However, in hyperspectral mineral identification, not only the spectral and spatial features of minerals need to be considered, but also the correlations between them are crucial to further promote identification accuracy. In this paper, we propose hierarchical spatial-spectral feature extraction with long short term memory (HSS-LSTM) to explore correlations between spatial features and spectral features and obtain hierarchical intrinsic features for mineral identification. In the proposed model, the fusion spatial-spectral feature is primarily extracted by stacking local spatial features obtained by a convolution neural network (CNN)-based model and spectral information together. To better exploit spatial features and spectral features, an LSTM-based model is proposed to capture correlations and obtain hierarchical features for accurate mineral identification. Specifically, the proposed model shares a uniform objective function, so that all the parameters in the network can be optimized in the meantime. Experimental results on the hyperspectral data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) in the Nevada mining area show that HSS-LSTM achieves an overall accuracy of 94.70% and outperforms other commonly used identification methods.This pilot study used accelerometers to investigate the effectiveness of a multiple recess school intervention on physical activity patterns in younger elementary children using a post-test only with nonequivalent groups design. First and second grade students (N = 157) participating in a larger study, the LiiNK Project® (Let's inspire innovation 'N Kids), wore accelerometers for the duration of the school day for two weeks to measure physical activity intensity and number of steps taken daily. Students attended either an intervention school (N = 90), participating in four 15-min unstructured, outdoor recesses and one 15-min character development lesson daily, or a control school (N = 67), participating in two 15-min unstructured, outdoor recesses daily and no character development program. The intervention students, grades 1 and 2, took more steps (p less then 0.001) and time spent in moderate (p less then 0.001) and vigorous (p less then 0.001) physical activity (MVPA) than the control school students. Intervention students averaged approximately 900 more steps per day than the control school students. These results show young children given 60 min of recess daily continue to increase physical activity patterns over those with 30 min of recess daily. Next steps are to evaluate if children demonstrate healthier body fat levels as a result of these higher patterns of MVPA daily.Cushing's disease caused due to adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas (ACTHomas) leads to hypercortisolemia, resulting in increased morbidity and mortality. Autonomous ACTH secretion is attributed to the impaired glucocorticoid negative feedback (glucocorticoid resistance) response. Interestingly, other conditions, such as ectopic ACTH syndrome (EAS) and non-neoplastic hypercortisolemia (NNH, also known as pseudo-Cushing's syndrome) also exhibit glucocorticoid resistance. Therefore, to differentiate between these conditions, several dynamic tests, including those with desmopressin (DDAVP), corticotrophin-releasing hormone (CRH), and Dex/CRH have been developed. In normal pituitary corticotrophs, ACTH synthesis and secretion are regulated mainly by CRH and glucocorticoids, which are the ACTH secretion-stimulating and -suppressing factors, respectively. These factors regulate ACTH synthesis and secretion through genomic and non-genomic mechanisms. Conversely, glucocorticoid negative feedback is impaired in ACTHomas, which could be due to the overexpression of 11β-HSD2, HSP90, or TR4, or loss of expression of CABLES1 or nuclear BRG1 proteins. Genetic analysis has indicated the involvement of several genes in the etiology of ACTHomas, including USP8, USP48, BRAF, and TP53. However, the association between glucocorticoid resistance and these genes remains unclear. Here, we review the clinical aspects and molecular mechanisms of ACTHomas and compare them to those of other related conditions.

Malnutrition is frequently underdiagnosed in geriatric patients and is considered to be a contributing factor for worse outcomes during hospitalization. In addition, elderly patients who undergo trauma are often malnourished at the time of incurring fractures. The geriatric nutritional risk index (GNRI), calculated based on the serum albumin level and the ratio of present body weight to ideal body weight, was proposed for the assessment of the nutritional status of elderly patients with various illnesses. This study aimed to investigate whether the GNRI has a prognostic value that links the nutritional status and mortality outcomes of elderly patients who have previously undergone trauma with femoral fractures.

From January 1, 2009 to December 31, 2019, a total of 678 elderly patients with femoral fractures were categorized into four nutritional risk groups a major-risk group (GNRI <82; group 1, n = 127), moderate-risk group (GNRI 82- <92; group 2, n = 179), low-risk group (GNRI 92-98; group 3, n = isks among patients in groups 2 and 3 compared with those in group 4.

This preliminary study suggested that the GNRI may be used as a screening tool to identify patients with malnutrition at a high risk of mortality among elderly patients with femoral fractures. A prospective study is needed to validate the suggestion.

This preliminary study suggested that the GNRI may be used as a screening tool to identify patients with malnutrition at a high risk of mortality among elderly patients with femoral fractures. A prospective study is needed to validate the suggestion.Hydrolates obtained via the hydrodistillation and steam distillation of Lavandulaangustifolia Mill., Syzygiumaromaticum L., Foeniculumvulgare Mill., and Laurusnobilis L. were analyzed by gas chromatography with flame ionization detector (GC-FID) and gas chromatography coupled to mass spectrometry (GC-MS). Additionally, the hydrolates were evaluated for antimicrobial activity (disk-diffusion and microdilution method), influence on biofilm formation (Christensen method) and cytotoxicity of concentrated hydrolates against human cell lines (A549) by xCELLigence system. Using chemical analysis, 48, 9, 13 and 33 different components were detected in lavender, clove, fennel and laurel hydrolates, respectively. Lavender hydrolate contained the largest proportion of 1,8-cineol, linalool furanoxide, and linalool. The main components of laurel hydrolate were 1,8-cineol, 4-terpineol and α-terpineol. Fenchone and estragole were the most abundant in fennel hydrolate, and eugenol and eugenyl acetate in clove hydrolate. Concentrated hydrolates showed significant antimicrobial activity. Clove hydrolate was among the most antimicrobially active agents, most preferably against C. albicans, with an inhibition zone up to 23.5 mm. Moreover, concentrated hydrolates did not show any cytotoxic effect again8 st human A549 cells. In the presence of the non-concentrated hydrolates, significantly reduced biofilm formation was observed; however, with concentrated clove hydrolate, there was an increase in biofilm formation, e.g., of A. thereius, A. lanthieri, and A. butzleri. Research shows new findings about hydrolates that may be important in natural medicine or for preservation purposes.Metastasis-related events are the primary cause of cancer-related deaths, and circulating tumor cells (CTCs) have a pivotal role in metastatic relapse. CTCs include a variety of subtypes with different functional characteristics. Interestingly, the epithelial-mesenchymal transition (EMT) markers expressed in CTCs are strongly associated with poor clinical outcome and related to the acquisition of circulating tumor stem cell (CTSC) features. Recent studies have revealed the existence of CTC clusters, also called circulating tumor microemboli (CTM), which have a high metastatic potential. In this review, we present current opinions regarding the clinical significance of CTCs and CTM with a mesenchymal phenotype as clinical surrogate markers, and we summarize the therapeutic strategy according to phenotype characterization of CTCs in various types of cancers for future precision medicine.Ionizing radiation has become the most effective way to modify natural and synthetic polymers through crosslinking, degradation, and graft polymerization. This review will include an in-depth analysis of radiation chemistry mechanisms and the kinetics of the radiation-induced C-centered free radical, anion, and cation polymerization, and grafting. It also presents sections on radiation modifications of synthetic and natural polymers. For decades, low linear energy transfer (LLET) ionizing radiation, such as gamma rays, X-rays, and up to 10 MeV electron beams, has been the primary tool to produce many products through polymerization reactions. Photons and electrons interaction with polymers display various mechanisms. While the interactions of gamma ray and X-ray photons are mainly through the photoelectric effect, Compton scattering, and pair-production, the interactions of the high-energy electrons take place through coulombic interactions. Despite the type of radiation used on materials, photons or high energy electrons, in both cases ions and electrons are produced.

Autoři článku: Engberghodges1981 (Rosa Poe)