Ellisengel8357

Z Iurium Wiki

32% to 106.3% with a relative standard deviation of less than 4.14%. Cyclopamine concentration Besides, the high expression of miRNA-155 in clinic blood of MM patients was sensitively distinguished from healthy peoples by using the proposed probes. The proposed novel fluorescent probe based on the DSN can be used to detect miRNA-155 in human serum and provide a potential, convenient and reliable tool for diagnosis of MM.Analyzing hub genes related to tumorigenesis based on biological big data has recently become a hotspot in biomedicine. Nanoprobes, nanobodies and theranostic molecules targeting hub genes delivered by nanocarriers have been widely applied in tumor theranostics. Hepatocellular carcinoma (HCC) is one of the most common cancers, with a poor prognosis and high mortality. Identifying hub genes according to the gene expression levels and constructing prognostic signatures related to the onset and outcome of HCC will be of great significance. In this study, the expression profiles of HCC and normal tissue were obtained from the GEO database and analyzed by GEO₂R to identify DEGs. GO terms and KEGG pathways were enriched in DAVID software. The STRING database was consulted to find protein-protein interactions between proteins encoded by the DEGs, which were visualized by Cytoscape. Then, overall survival associated with the hub genes was calculated by the Kaplan-Meier plotter online tool, and verification of the results was carried out on TCGA samples and their corresponding clinical information. A total of 603 DEGs were obtained, of which 479 were upregulated and 124 were downregulated. PPI networks including 603 DEGs and 18 clusters were constructed, of which 7 clusters with MCODE score ≥3 and nodes ≥5 were selected. The 5 genes with the highest degrees of connectivity were identified as hub genes, and a prognostic model was constructed. The expression and prognostic potential of this model was validated on TCGA clinical data. In conclusion, a five-gene signature (TOP2A, PCNA, AURKA, CDC20, CCNB2) overexpressed inHCC was identified, and a prognostic model was constructed. This gene signature may act as a prognostic model for HCC and provide potential targets of nanotechnology.In recent years, the emergence of non-toxic but catalytically active inorganic nanoparticles has attracted great attention for cancer treatment, but the therapeutic effect has been affected by the limited reactive oxygen species in tumors. Therefore, the combination of chemotherapy and chemodynamic therapy is regarded as a promising therapeutic strategy. In this paper, we reported the preparation and bioactivity evaluation of poly(lactic acid-co-glycolic acid) (PLGA) grafted-γ-Fe₂O₃ nanoparticles with dual response of endogenous peroxidase and catalase like activities. Our hypothesis is that PLGAgrafted γ-Fe₂O₃ nanoparticles could be used as a drug delivery system for the anti-tumor drug doxorubicin to inhibit the growth of lung adenocarcinoma A549 cells; meanwhile, based on its mimic enzyme properties, this kind of nanoparticles could be combined with doxorubicin in the treatment of A549 cells. Our experimental results showed that the PLGAgrafted γ-Fe₂O₃ nanoparticles could simulate the activity of catalase and decompose hydrogen peroxide into H₂O and oxygen in neutral tumor microenvironment, thus reducing the oxidative damage caused by hydrogenperoxide to lung adenocarcinoma A549 cells. In acidic microenvironment, PLGA grafted γ-Fe₂O₃ nanoparticles could simulate the activity of peroxidase and effectively catalyze the decomposition of hydrogen peroxide to generate highly toxic hydroxyl radicals, which could cause the death of A549 cells. Furthermore, the synergistic effect of peroxidase-like activity of PLGA-grafted γ-Fe₂O₃ nanoparticles and doxorubicin could accelerate the apoptosisand destruction of A549 cells, thus enhancing the antitumor effect of doxorubicin-loaded PLGA-grafted γ-Fe₂O₃ nanoparticles. Therefore, this study provides an effective nanoplatform based on dual inorganic biomimetic nanozymes for the treatment of lung cancer.In recent years, 3D bio-printing technology has developed rapidly and become an advanced bio-manufacturing technology. At present, 3D bio-printing technology has been explored in the fields of tissue engineering, drug testing and screening, regenerative medicine and clinical disease research and has achieved many research results. Among them, the application of 3D bio-printing technology in tissue engineering has been widely concerned by researchers, and it contributing many breakthroughs in the preparation of tissue engineering scaffolds. In the future, it is possible to print fully functional tissues or organs by using 3D bio-printing technology which exhibiting great potential development prospects in th applications of organ transplantation and human body implants. It is expected to solve thebiomedical problems of organ shortage and repair of damaged tissues and organs. Besides,3Dbio-printing technology will benefit human beings in more fields. Therefore, this paper reviews the current applications, research progresses and limitations of 3D bio-printing technology in biomedical and life sciences, and discusses the main printing strategies of 3D bio-printing technology. And, the research emphases, possible development trends and suggestions of the application of 3D bio-printing are summarized to provide references for the application research of 3D bio-printing.

Using newly harmonised individual-level data on health and socio-economic environments in Latin American cities (from the Salud Urbana en América Latina (SALURBAL) study), we assessed the association between obesity and education levels and explored potential effect modification of this association by city-level socio-economic development.

This cross-sectional study used survey data collected between 2002 and 2017. Absolute and relative educational inequalities in obesity (BMI ≥ 30 kg/m2, derived from measured weight and height) were calculated first. Then, a two-level mixed-effects logistic regression was run to test for effect modification of the education-obesity association by city-level socio-economic development. All analyses were stratified by sex.

One hundred seventy-six Latin American cities within eight countries (Brazil, Chile, Colombia, Costa Rica, El Salvador, Guatemala, Mexico and Peru).

53 186 adults aged >18 years old.

Among women, 25 % were living with obesity and obesity was negatively associated with educational level (higher education-lower obesity) and this pattern was consistent across city-level socio-economic development.

Autoři článku: Ellisengel8357 (MacDonald Storm)