Ellegaardgram1103

Z Iurium Wiki

Nasopharyngeal carcinoma (NPC) is an endemic malignancy in Southeast Asia, particularly Southern China. The classical non-keratinising cell type is almost unanimously associated with latent Epstein-Barr virus (EBV) infection. Circulating plasma EBV DNA can be a useful biomarker in various clinical aspects, but comprehensive recommendations and international guidelines are still lacking. We conducted a systematic review of all original articles on the clinical application of plasma EBV DNA for NPC; we further evaluated its strengths and limitations for consideration as standard recommendations.

The search terms 'nasopharyngeal OR nasopharynx', and 'plasma EBV DNA OR cell-free EBV OR cfEBV' were used to identify full-length articles published up to December 2020 in the English literature. Three authors independently reviewed the article titles, removed duplicates and reviewed the remaining articles for eligibility.

A total of 81 articles met the eligibility criteria. Based on the levels of evidence and grades of recommendation assessed, it is worth considering the inclusion of plasma EBV DNA in screening, pre-treatment work-up for enhancing prognostication and tailoring of treatment strategy, monitoring during radical treatment, post-treatment surveillance for early detection of relapse, and monitoring during salvage treatment for recurrent or metastatic NPC. One major limitation is the methodology of measurement requiring harmonisation for consistent comparability.

The current comprehensive review supports the inclusion of plasma EBV DNA in international guidelines in the clinical aspects listed, but methodological issues must be resolved before global application.

The current comprehensive review supports the inclusion of plasma EBV DNA in international guidelines in the clinical aspects listed, but methodological issues must be resolved before global application.Electroreduction of carbon dioxide (CO2) into formic acid/formate has been considered as one of the most promising strategies for obtaining value-added fuels and chemical productions. Herein, we present a general method for preparing Bi-based electrocatalysts via in situ reduction of bismuth oxyiodide (BiOI) in CO2-saturated electrolyte. The precursors of BiOI nanoplates (P-nanoplates) with thickness of 30-40 nm could be easily obtained and provide a concise model to probe the mechanisms of CO2 reduction to formate. BiOI nanoplates precursors derived Bi nanosheets (P-nanoplates-Bi) exhibited an excellent performance for CO2 reduction to formate, achieving Faradaic efficiencies (FEs) over 80% in a wide potential window and a maximum FE approaching of 95% with a current density of 13.3 ± 0.6 mA cm-2 at -0.9 V versus reverse hydrogen electrode (υs. RHE). Such P-nanoplates-Bi nanosheets showed a stable electrocatalytic actitivity during 15 h operation in 0.5 M KHCO3 aqueous solution. The superior performance is mainly attributed to the two-dimensional (2D) Bi nanosheets, which can increase CO2•- adsorption, enlarge active surface area, show better reaction kinetics and provide lower contact resistance with accelerated electron transfer. For comparison, precursors of BiOI plate-like (P-bulk) with doubled thicknesses and ultrathin BiOI with a few nanometers derived Bi catalysts tend to agglomerate and appear as irregular structured Bi nanoparticles during the reaction. Their peak FEs for formate are much lower than those of P-nanoplates derived Bi nanosheets at -0.9 V.Three-dimension (3D) porous carbon-sheet microspheres (PCSMs) are prepared through coating coal tar pitch on basic zinc carbonate microspheres followed by in situ ZnO template carbonization and KOH activation. The as-prepared PCSMs show microsphere morphology composed of petal-like carbon nanosheets, which have large specific area (1359.88-2059.43 m2 g-1) and multiscale pores (mainly micropores and mesopores). As the supercapacitor electrodes, the 3D PCSMs present a good electrochemical performance with a large specific capacitance of 313 F g-1 at 1 A g-1 and high rate capability of 81.9% capacitance retention when increasing the current density up to 50 A g-1 in a three-electrode system. In addition, the energy density can reach up to 18.79 Wh kg-1 at a high power density of 878.4 W kg-1 for PCSMs-0.2a symmetrical supercapcitor in 1 M Na2SO4 electrolyte.Hybrid supercapacitors have the advantages of fast charging and discharging and long service life, which are an efficient and practical energy storage device. Therefore, the design of hybrid supercapacitors is the focus of current research. In this paper, the silver modified spinel NiCo2S4 nanorods (Ag2S-NiCo2S4/CF) are synthesized by an efficient and economical method, which has excellent electrochemical performance. The Ag2S-NiCo2S4/CF shows a high specific capacity of 179.7 mAh g-1 at current density of 1 A g-1, and excellent rate capability (capacitance retention of ~87% at 20 A g-1). The corresponding Ag2S-NiCo2S4/CF//AC/CF hybrid supercapacitor is assembled by Ag2S-NiCo2S4/CF as the positive electrode, which can provide an energy density of 35.978 Wh kg-1 at a high-power density of 800 W kg-1 and has significant cyclic stability (~80% of the initial capacitor after ~9600 cycles). Therefore, Ag2S-NiCo2S4/CF material is a promising electrode material that can be applied to hybrid supercapacitors.In the process of photocatalytic oxidation (PCO), titanium dioxide (TiO2) shows excellent capabilities. However, when TiO2 is used to remove volatile organic compounds (VOCs), there are some drawbacks including weak adsorption of gaseous contaminants, insufficient utilization of sunlight, and rapid recombination of photogenerated carriers. Herein, a TiO2-based ternary heterogeneous photocatalyst, g-C3N4/Ag-TiO2, was successfully fabricated to photodegrade gaseous acetaldehyde (one of the representatives of oxygenated VOCs) under visible light. Among the various samples, the g-C3N4/50 wt% Ag-TiO2 exhibited an excellent photocatalytic activity, which was 5.8 times of bare TiO2. The mineralization efficiency of acetaldehyde was also increased by 3.7 times compared to bare TiO2. The substantial improvement in the PCO performance of the ternary system can be associated with the good adsorption to acetaldehyde gas and light-harvesting capability, as well as improved charge separation process. The application of Langmuir-Hinshelwood kinetic model suggested that relative humidity played a significant role in the VOCs degradation. Also, the photodegradation of gaseous acetaldehyde primarily occurred on the catalysts surface. Based on several characterizations, i.e., UV-vis spectroscopy, photoluminescence spectrum, photocurrent spectroscopy and electron spin-resonance test, a suitable degradation mechanism is proposed. This study provides a novel ternary photocatalyst with improved photocatalytic performance and stability, which can be used for the low-concentration VOCs abatement in the indoor environment.Fluorine-doped graphene quantum dots have unique chemical bonds and charge distribution, which can bring unexpected properties compared to other common atom-doped graphene quantum dots. In the present work, fluorine and nitrogen co-doped graphene quantum dots (F, N-GQDs) are synthesized from levofloxacin via a simple hydrothermal method. Systematic studies demonstrate that F, N-GQDs can emit various fluorescence with the wavelength ranging from blue to green by dispersing F, N-GQDs into different solvents. Moreover, multi-color fluorescence is available by simply changing the concentration of F, N-GQDs. In addition to these unique characteristics, F, N-GQDs also exhibit a sensitive fluorescence response to tetracycline with an ultralow detection limit of 77 nM in water. Because of high photostability and high quantum yield, the F, N-GQDs are exploited as a unique invisible ink, which is printable and writable on paper. Meanwhile, based on the solvatochromism of F, N-GQDs, we realized the color adjustable fluorescent ink. Finally, large-area flexible multi-color fluorescent films are realized. Our synthesized F, N-GQDs, with tunable fluorescence in wavelength and intensity, have numerous opportunities for optical molecular sensors, information security, flexible optics, and others.Smart wearable electronics have drawn increasing attention for their potential applications in personal thermal management, human health monitoring, portable energy conversion/storage, electronic skin and so on. However, it is still a critical challenge to fabricate the multifunctional textiles with tunable morphology and performance while performing well in flexibility, air permeability, wearing comfortability. Herein, we develop a novel roll-to-roll layer-by-layer assembly strategy to construct bark-shaped carbon nanotube (CNT)/Ti3C2Tx MXene composite film on the fiber surface. The fabricated bark-shaped CNT/MXene decorated fabrics (CMFs) exhibit good flexibility, air permeability and electrical conductivity (sheet resistance, 6.6 Ω/□). In addition, the CMFs demonstrate good electrothermal performance (70.9 °C, 5 V), electromagnetic interference (EMI) shielding performance (EMI shielding effectiveness, 30.0 dB under X-Brand), and high sensitivity as the flexible piezoresistive sensors for monitoring the human motions. Importantly, our CMFs show distinctive EMI shielding mechanism, where a great proportion of incident electromagnetic microwaves are reflected by the bark-shaped CNT/MXene films owing to the multi-interface scattering effects. This work may provide a new strategy for the fabrication of multifunctional textile-based electronics and pave the way for smart wearable electronics.Photocatalysis is a promising approach for generating hydrogen, an eco-friendly and cost-effective fuel. It is hypothesized that the ternary catalyst ZnIn2S4-rGO-CuInS2, prepared by ultrasonication method, should be effective for optimized photocatalytic hydrogen generation in a Na2S/Na2SO3-water mixture. The as-synthesized catalyst was characterized using various surface analytical and optical techniques. Field-emission scanning electron microscopy and high-resolution transmission electron microscopy analyses revealed that marigold-like structured ZnIn2S4 and layer-structured CuInS2 were dispersed on the reduced graphene oxide sheets. The ternary ZnIn2S4-rGO-CuInS2 system showed enhanced photocatalytic H2 production compared to pure ZnIn2S4, CuInS2, ZnIn2S4-rGO, CuInS2-rGO, and ZnIn2S4-CuInS2 catalysts under visible light illumination. The fabricated ZnIn2S4-rGO-CuInS2 catalyst afforded hydrogen generation of 2531 μmol/g after 5 h. The enhanced performance of the ZnIn2S4-rGO-CuInS2 catalyst originates from the synergetic effect with rGO as the electron transfer medium, and is confirmed by photocurrent density and photoluminescence measurements that indicate reduced recombination between the excited electron and hole pairs, and fast electron transfer in the ternary composite. R406 The excellent performance of the ZnIn2S4-rGO-CuInS2 catalyst for up to three consecutive cycles was demonstrated in cyclic stability tests under visible-light illumination.Application of metal organic frameworks (MOFs) on sensors is of great interest for researchers. Film forming ability of the sensing material is very important for both the preparation process and sensing properties of the devices. Humidity sensors based on UIO-66 derived polyelectrolyte films were well prepared by in situ thiol-ene click cross-linking polymerization in this work. The hydrophilicity of the sensing film could be controlled by the feed ratios. The optimized humidity sensor shows a fast response to RHs change (Res/Rec time is 3.1 s/1.5 s, respectively) with ∼1.2% RH of humidity hysteresis. The water molecules adsorption behavior of the film and the sensing mechanism were also be investigated. The humidity sensor with good water and thermal stability and repeatability was applied in breath monitoring, which can well distinguish different breath states.

Autoři článku: Ellegaardgram1103 (Sharp McDermott)