Dudleymeincke0163

Z Iurium Wiki

The controversial problematicum Tullimonstrum, known as the Tully Monster, groups with the vertebrates, providing strong evidence of a vertebrate rather than invertebrate affinity. © 2020 John Wiley & Sons Ltd.The most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is an intronic hexanucleotide repeat expansion in the C9orf72 gene. In disease, RNA transcripts containing this expanded region undergo repeat-associated non-AUG translation to produce dipeptide repeat proteins (DPRs), which are detected in brain and spinal cord of patients and are neurotoxic both in vitro and in vivo paradigms. We reveal here a novel pathogenic mechanism for the most abundantly detected DPR in ALS/FTD autopsy tissues, poly-glycine-alanine (GA). Previously, we showed motor dysfunction in a GA mouse model without loss of motor neurons. Here, we demonstrate that mobile GA aggregates are present within neurites, evoke a reduction in synaptic vesicle-associated protein 2 (SV2), and alter Ca2+ influx and synaptic vesicle release. These phenotypes could be corrected by restoring SV2 levels. In GA mice, loss of SV2 was observed without reduction of motor neuron number. Notably, reduction in SV2 was seen in cortical and motor neurons derived from patient induced pluripotent stem cell lines, suggesting synaptic alterations also occur in patients. © 2020 The Authors. Published under the terms of the CC BY 4.0 license.Species interaction networks, which play an important role in determining pathogen transmission and spread in ecological communities, can shift in response to agricultural landscape simplification. Selleckchem Fetuin However, we know surprisingly little about how landscape simplification-driven changes in network structure impact epidemiological patterns. Here, we combine mathematical modelling and data from eleven bipartite plant-pollinator networks observed along a landscape simplification gradient to elucidate how changes in network structure shape disease dynamics. Our empirical data show that landscape simplification reduces pathogen prevalence in bee communities via increased diet breadth of the dominant species. Furthermore, our empirical data and theoretical model indicate that increased connectance reduces the likelihood of a disease outbreak and decreases variance in prevalence among bee species in the community, resulting in a dilution effect. Because infectious diseases are implicated in pollinator declines worldwide, a better understanding of how land use change impacts species interactions is therefore critical for conserving pollinator health. © 2020 John Wiley & Sons Ltd/CNRS.Industrial use of nanomaterials is rapidly increasing, making the effects of these materials on the environment and human health of critical concern. Standard nanotoxicity evaluation methods rely on detecting cell death or major dysfunction and will miss early signs of toxicity. In this work, the use of rapid and sensitive nanosensors that can efficiently detect subtle phenotypic changes on the cell surface following nanomaterial exposure is reported. Importantly, the method reveals significant phenotypic changes at dosages where other conventional methods show normal cellular activity. This approach holds promise in toxicological and pharmacological evaluations to ensure safer and better use of nanomaterials. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.The ability of fishes to adapt to any aquatic environment seems limitless. It is enthralling how new species keep appearing at the deep sea or in subterranean environments. There are close to 230 known species of cavefishes, still today the best-known cavefish is Astyanax mexicanus, a Characid that has become a model organism, and has been studied and scrutinized since 1936. There are two morphotypes for A. mexicanus, a surface fish and a cavefish. The surface fish lives in central and northeastern Mexico and south of the United States, while the cavefish is endemic to the "Sierra del Abra-Tanchipa region" in northeast Mexico. The extensive genetic and genomic analysis depicts a complex origin for Astyanax cavefish, with multiple cave invasions and persistent gene flow among cave populations. The surface founder population prevails in the same region where the caves are. In this review, we focus on both morphotype's main morphological and physiological differences, but mainly in recent discoveries about behavioral and metabolic adaptations for subterranean life. These traits may not be as obvious as the troglomorphic characteristics, but are key to understand how Astyanax cavefish thrives in this environment of perpetual darkness. © 2020 Wiley Periodicals, Inc.The identification of bis-3-(N,N-dimethylamino)propyl zinc ([Zn(DMP)2 ], BDMPZ) as a safe and potential alternative to the highly pyrophoric diethyl zinc (DEZ) as atomic layer deposition (ALD) precursor for ZnO thin films is reported. Owing to the intramolecular stabilization, BDMPZ is a thermally stable, volatile, nonpyrophoric solid compound, however, it possesses a high reactivity due to the presence of Zn-C and Zn-N bonds in this complex. Employing this precursor, a new oxygen plasma enhanced (PE)ALD process in the deposition temperature range of 60 and 160 °C is developed. The resulting ZnO thin films are uniform, smooth, stoichiometric, and highly transparent. The deposition on polyethylene terephthalate (PET) at 60 °C results in dense and compact ZnO layers for a thickness as low as 7.5 nm with encouraging oxygen transmission rates (OTR) compared to the bare PET substrates. As a representative application of the ZnO layers, the gas sensing properties are investigated. A high response toward NO2 is observed without cross-sensitivities against NH3 and CO. Thus, the new PEALD process employing BDMPZ has the potential to be a safe substitute to the commonly used DEZ processes. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.In the field of micro-nanofluidics, a freestanding configuration of a nanoporous junction is highly demanded to increase the design flexibility of the microscale device and the interfacial area between the nanoporous junction and microchannels, thereby improving the functionality and performance. This work first reports direct fabrication and incorporation of a freestanding nanoporous junction in a microfluidic device by performing an electrolyte-assisted electrospinning process to fabricate a freestanding nanofiber membrane and subsequently impregnating the nanofiber membrane with a nanoporous precursor material followed by a solidification process. This process also enables to readily control the geometry of the nanoporous junction depending on its application. By these advantages, vertically stacked 3D micro-nanofluidic devices with complex configurations are easily achieved. To demonstrate the broad applicability of this process in various research fields, a reverse electrodialysis-based energy harvester and an ion concentration polarization-based preconcentrator are produced.

Autoři článku: Dudleymeincke0163 (McDonald Wolf)