Dominguezlarsen1518

Z Iurium Wiki

These studies also revealed that the energy transfer from borane to BODIPY can be elegantly tuned by modulating the dihedral angle between these two moieties.Coordination polymers with metal-sulfur (M-S) bonds in their nodes have interesting optical properties and can be used as photocatalysts for water splitting. A wide range of inorganic-organic hybrid materials with M-S bonds have been prepared in recent years. However, there is a dearth of structural information because of their low crystallinity, which has hampered the understanding of their underlying chemistry and physics. Thus, we conducted a structural study of a novel, highly crystalline coordination polymer with M-S bonds. Theoretical calculations were performed to elucidate its photoconductivity mechanism. The photoconductive, three-dimensional coordination polymer [Pb(tadt)]n (denoted as KGF-9; tadt = 1,3,4-thiadiazole-2,5-dithiolate) was synthesized and confirmed to have a three-dimensional structure containing a two-dimensional Pb-S framework by single-crystal X-ray diffraction. We also performed diffuse-reflectance ultraviolet-visible-near-infrared spectroscopy, time-resolved microwave conductivity, and photoelectron yield spectroscopy measurements on the bulk powder samples, as well as first-principles calculations. Additionally, direct-current photoconductivity measurements were conducted on a single-crystal sample.The ecological roles of influent microflora in activated sludge communities have not been well investigated. Herein, parallel lab-scale anoxic/aerobic (A/O) membrane bioreactors (MBRs), which were fed with raw (MBR-C) and sterilized (MBR-T) municipal wastewater, were operated. The MBRs showed comparable nitrogen removal but superior phosphorus removal in MBR-C than MBR-T over the long-term operation. The MBR-C sludge community had higher diversity and deterministic assembly than the MBR-T sludge community as revealed by 16S rRNA gene sequencing and null model analysis. Moreover, the MBR-C sludge community had higher abundance of polyphosphate accumulating organisms (PAOs) and hydrolytic/fermentative bacteria (HFB) but lower abundance of glycogen-accumulating organisms (GAOs), in comparison with MBR-T sludge. Intriguingly, the results of both the net growth rate and Sloan's neutral model demonstrated that HFB in the sludge community were generally slow-growing or nongrowing and their consistent presence in activated sludge was primarily attributed to the HFB immigration from influent microflora. Positive correlations between PAOs and HFB and potential competitions between HFB and GAOs were observed, as revealed by the putative species-species associations in the ecological networks. Taken together, this work deciphers the positive ecological roles of influent microflora, particularly HFB, in system functioning and highlights the necessity of incorporating influent microbiota for the design and modeling of A/O MBR plants.Pumps and motors are essential components of the world as we know it. From the complex proteins that sustain our cells, to the mechanical marvels that power industries, much we take for granted is only possible because of pumps and motors. Although molecular pumps and motors have supported life for eons, it is only recently that chemists have made progress toward designing and building artificial forms of the microscopic machinery present in nature. The advent of artificial molecular machines has granted scientists an unprecedented level of control over the relative motion of components of molecules through the development of kinetically controlled, away-from-thermodynamic equilibrium chemistry. We outline the history of pumps and motors, focusing specifically on the innovations that enable the design and synthesis of the artificial molecular machines central to this Perspective. A key insight connecting biomolecular and artificial molecular machines is that the physical motions by which these machines carry out their function are unambiguously in mechanical equilibrium at every instant. The operation of molecular motors and pumps can be described by trajectory thermodynamics, a theory based on the work of Onsager, which is grounded on the firm foundation of the principle of microscopic reversibility. Free energy derived from thermodynamically non-equilibrium reactions kinetically favors some reaction pathways over others. By designing molecules with kinetic asymmetry, one can engineer potential landscapes to harness external energy to drive the formation and maintenance of geometries of component parts of molecules away-from-equilibrium, that would be impossible to achieve by standard synthetic approaches.Although >700 disinfection byproducts (DBPs) have been identified, >50% of the total organic halogen (TOX) in drinking water chlorination is unknown, and the DBPs responsible for the chlorination-associated health risks remain largely unclear. Recent studies have revealed numerous aromatic halo-DBPs, which generally present substantially higher developmental toxicity than aliphatic halo-DBPs. This raises a fascinating and important question how much of the TOX and developmental toxicity of chlorinated drinking water can be attributed to aromatic halo-DBPs? In this study, an effective approach with ultraperformance liquid chromatography was developed to separate the DBP mixture (from chlorination of bromide-rich raw water) into aliphatic and aromatic fractions, which were then characterized for their TOX and developmental toxicity. selleck inhibitor For chlorine contact times of 0.25-72 h, aromatic fractions accounted for 49-67% of the TOX in the obtained aliphatic and aromatic fractions, which were equivalent to 26-36% of the TOX in the original chlorinated water samples. Aromatic halo-DBP fractions were more developmentally toxic than the corresponding aliphatic fractions, and the overall developmental toxicity of chlorinated water samples was dominated by aromatic halo-DBP fractions. This might be explained by the considerably higher potentials of aromatic halo-DBPs to bioconcentrate and then generate reactive oxygen species in the organism.Secondary structure formation differentiates polypeptides from most of the other synthetic polymers, and the transitions from random coils to rod-like α-helices or β-sheets represent an additional parameter to direct self-assembly and the morphology of nanostructures. We investigated the influence of distinct secondary structures on the self-assembly of reactive amphiphilic polypept(o)ides. The individual morphologies can be preserved by core cross-linking via chemoselective disulfide bond formation. A series of thiol-responsive copolymers of racemic polysarcosine-block-poly(S-ethylsulfonyl-dl-cysteine) (pSar-b-p(dl)Cys), enantiopure polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine) (pSar-b-p(l)Cys), and polysarcosine-block-poly(S-ethylsulfonyl-l-homocysteine) (pSar-b-p(l)Hcy) was prepared by N-carboxyanhydride polymerization. The secondary structure of the peptide segment varies from α-helices (pSar-b-p(l)Hcy) to antiparallel β-sheets (pSar-b-p(l)Cys) and disrupted β-sheets (pSar-b-p(dl)Cys). When subjected to nanoprecipitation, copolymers with antiparallel β-sheets display the strongest tendency to self-assemble, whereas disrupted β-sheets hardly induce aggregation.

Autoři článku: Dominguezlarsen1518 (Levine Halberg)