Dickersonkarlsen6027

Z Iurium Wiki

The purpose of this study was to characterize clinician-scientists in ophthalmology and identify factors associated with successful research funding, income, and career satisfaction.

Cross-sectional study.

A survey was conducted of clinician-scientists in ophthalmology at US academic institutions between April 17, 2019, and May 19, 2019. Collected information including 1) demographic data; 2) amount, type, and source of startup funding; first extramural grant; and first R01-equivalent independent grant; 3) starting and current salaries; and 4) Likert-scale measurements of career satisfaction were analyzed using multivariate regression.

Ninety-eight clinician-scientists in ophthalmology were surveyed across different ages (mean 48 ± 11 years), research categories, institutional types, geographic regions, and academic ranks. Median startup funding ranged from $50-99k, and median starting salaries ranged from $150-199k. A majority of investigators (67%) received their first extramural award from the Natiinstitutional support and earlier acquisition of extramural grants but does not impact academic salaries. Nevertheless, career satisfaction among clinician-scientists improves with time, which is not necessarily influenced by research or financial success.The realization of artificial photosynthesis in the photocatalytic CO2 transformation into valuable chemicals or solar fuels, such as CO, CH4, HCOOH, and CH3OH, by solar-light harvesting is a promising solution to both global-warming and energy-supply issues. Recently, zinc oxide (ZnO) has emerged as an excellent oxidative photocatalyst among non-titanium metal oxides due to its availability, outstanding semiconducting and optical properties, non-toxicity, affordability, and ease of synthesis. However, ZnO wide bandgap and inability to absorb in the visible region has demanded particular modification for its practical use as a sustainable photocatalyst. This review provides a panorama of the latest advancement on ZnO photocatalysis for CO2 reduction with an overview of fundamental aspects. Various modification strategies such as transition metal and non-metal doping, loading of plasmonic metals, and surface vacancy engineering for tunning the properties and improving the performance of ZnO are elaborated. Composites or hetero-structuralization-based Z-scheme formation is also presented along with a detailed photocatalytic reduction mechanism. Moreover, a new novel Step-scheme (S-scheme) heterostructure modification with a charge transfer pathway mechanism is also highlighted. Finally, the key challenges and new directions in this field are proposed to provide a new vision for further improvement for ZnO-based photocatalytic CO2 conversion.With aging, the skin becomes thin and drastically loses collagen. Extracellular superoxide dismutase (EC-SOD), also known as superoxide dismutase (SOD) 3, is the major SOD in the extracellular matrix of the tissues and is well-known to maintain the reduction‒oxidation homeostasis and matrix components of such tissues. However, the role of EC-SOD in aging-associated reductions of skin thickness and collagen production is not well-studied. In this study, we compared the histological differences in the dorsal skin of EC-SOD‒overexpressing transgenic mice (Sod3+/+) of different age groups with that in wild-type mice and also determined the underlying signaling mechanism. Our data showed that the skin thickness in Sod3+/+ mice significantly increased with aging compared with that in wild-type male mice. Furthermore, Sod3+/+ mice had promoted collagen production through the activation of adenosine monophosphate-activated protein kinase and Nrf2/HO-1 pathways in aged mice. Interestingly, subcutaneous injection of adeno-associated virus‒overexpressing EC-SOD exhibited increased skin thickness and collagen expression. Furthermore, combined recombinant EC-SOD and dihydrotestosterone treatment synergistically elevated collagen production through the activation of TGFβ in human dermal fibroblasts. Altogether, these results showed that EC-SOD prevents skin aging by promoting collagen production in vivo and in vitro. Therefore, we propose that EC-SOD may be a potential therapeutic target for antiaging in the skin.Methicillin-resistant staphylococci have become growing threats to human health, and novel antimicrobials are urgently needed. Natural antimicrobial peptides (AMPs) are promising alternatives to traditional antibiotics. Here, two novel cationic α-helical antimicrobial peptides, Lausporin-1 and Lausporin-2, were identified from the venom gland of the scorpion L. australasiae through a cDNA library screening strategy. Biochemical analyses demonstrated that Lausporin-1 and Lausporin-2 are cationic α-helical amphipathic molecules. Antimicrobial assays demonstrated that the two peptides possess antibacterial activities against several species of antibiotic-resistant staphylococci. Importantly, they are active against methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus capitis, with the minimum inhibitory concentrations ranging from 2.5 to 10 μg/ml. Moreover, both peptides can induce dose-dependent plasma membrane disruptions of the bacteria. In short, our work expands the knowledge of the scorpion L. australasiae venom-derived AMPs and sheds light on the potential of Lausporin-1 and Lausporin-2 in the development of novel drugs against methicillin-resistant staphylococci.This study was aimed at designing and evaluation of a multimeric vaccine construct against Toxoplasma gondii via utilization of SAG1 along with apicoplast ribosomal proteins (S2, S5 and L11). Top-ranked MHC-I and MHC-II binding as well as shared, immunodominant linear B-cell epitopes were predicted and joined together via appropriate linkers. Also, TLR-4 agonist (RS-09 synthetic protein) and His-tag were added to the N- and C-terminal of the vaccine sequence. The finally-engineered chimeric vaccine had a length of 291 amino acids with a molecular weight of 31.46 kDa. Selleckchem Sardomozide Physico-chemical features showed a soluble, highly-antigenic and non-allergenic candidate. Secondary and tertiary structures were predicted, and subsequent analyses confirmed the construct stability that was capable to properly interact with human TLR-4. Immunoinformatics-based simulation displayed potent stimulation of T- and B-cell mediated immune responses upon vaccination with the proposed multi-epitope candidate. In conclusion, obtained information demonstrated a highly antigenic vaccine candidate, which could develop high levels of IFN-γ and other components of cellular immune profile, and can be directed for toxoplasmosis prophylactic purposes.

Autoři článku: Dickersonkarlsen6027 (Davis Murphy)