Deckerhyldgaard9487
The use of DNA-damaging agents such as radiotherapy and chemotherapy has been a mainstay treatment protocol for many cancers, including lung and prostate. Recently, FDA approval of inhibitors of DNA repair, and targeting innate immunity to enhance the efficacy of DNA-damaging agents have gained much attention. Yet, inherent or acquired resistance against DNA-damaging therapies persists as a fundamental drawback. While cancer eradication by causing cancer cell death through induction of apoptosis is the ultimate goal of anti-cancer treatments, autophagy and senescence are two major cellular responses induced by clinically tolerable doses of DNA-damaging therapies. Unlike apoptosis, autophagy and senescence can act as both pro-tumorigenic as well as tumor suppressive mechanisms. DNA damage-induced senescence is associated with a pro-inflammatory secretory phenotype, which contributes to reshaping the tumor- immune microenvironment. Moreover, PTEN (phosphatase and tensin homolog) is a tumor supressor deleted in many tumors, and has been implicated in both senescence and autophagy. This review presents an overview of the literature on the regulation and consequences of DNA damage- induced senescence in cancer cells, with a specific focus on autophagy and PTEN. Both autophagy and senescence occur concurrently in the same cells in response to DNA damaging agents. However, a deterministic relationship between these fundamental processes has been controversial. We present experimental evidence obtained with tumor cells, with a prime focus on two models of cancer, prostate and lung. GDC-0084 nmr A better understanding of mechanisms associated with DNA damage-induced cellular senescence is central to fully exploit the potential of DNA-damaging agents against cancer.Autophagy is an evolutionarily conserved process necessary to maintain cell homeostasis in response to various forms of stress such as nutrient deprivation and hypoxia as well as functioning to remove damaged molecules and organelles. The role of autophagy in cancer varies depending on the stage of cancer. Cancer therapeutics can also simultaneously evoke cancer cell senescence and ploidy increase. Both cancer cell senescence and polyploidization are reversible by depolyploidization giving rise to the progeny. Autophagy activation may be indispensable for cancer cell escape from senescence/polyploidy. As cancer cell polyploidy is proposed to be involved in cancer origin, the role of autophagy in polyploidization/depolyploidization of senescent cancer cells seems to be crucial. Accordingly, this review is an attempt to understand the complicated interrelationships between reversible cell senescence/polyploidy and autophagy.Autophagy is a fundamental cellular process, which allows cells to adapt to metabolic stress through the degradation and recycling of intracellular components to generate macromolecular precursors and produce energy. Autophagy is also critical in maintaining cellular/tissue homeostasis, as well preserving immunity and preventing human disease. Deregulation of autophagic processes is associated with cancer, neurodegeneration, muscle and heart disease, infectious diseases and aging. Research on a variety of stem cell types establish that autophagy plays critical roles in normal and cancer stem cell quiescence, activation, differentiation, and self-renewal. Considering its critical function in regulating the metabolic state of stem cells, autophagy plays a dual role in the regulation of normal and cancer stem cell senescence, and cellular responses to various therapeutic strategies. The relationships between autophagy, senescence, dormancy and apoptosis frequently focus on responses to various forms of stress. These are interrelated processes that profoundly affect normal and abnormal human physiology that require further elucidation in cancer stem cells. This review provides a current perspective on autophagy and senescence in both normal and cancer stem cells.Both senescence and autophagy have been strongly linked to aging and also cancer development. Numerous molecular, cellular, and physiological changes are known to correlate with an increasing age, yet our understanding of what underlies these changes or how they combine to give rise to the various pathologies associated with aging is still unclear. Levels of autophagy activity are known to decrease with advancing age, in a variety of organisms including mammals. Whereas senescent cells are known to accumulate in our bodies with age. Herein we review evidence from some elegant genetic mouse models linking senescence and also autophagy to aging and cancer. It is especially interesting to note the convergence in the pathological phenotypes of these two processes, senescence and autophagy, in these mouse models.Tumor cells can undergo diverse responses to cancer therapy. While apoptosis represents the most desirable outcome, tumor cells can alternatively undergo autophagy and senescence. Both autophagy and senescence have the potential to make complex contributions to tumor cell survival via both cell autonomous and cell non-autonomous pathways. The induction of autophagy and senescence in tumor cells, preclinically and clinically, either individually or concomitantly, has generated interest in the utilization of autophagy modulating and senolytic therapies to target autophagy and senescence, respectively. This chapter summarizes the current evidence for the promotion of autophagy and senescence as fundamental responses to cancer therapy and discusses the complexity of their functional contributions to cell survival and disease outcomes. We also highlight current modalities designed to exploit autophagy and senescence in efforts to improve the efficacy of cancer therapy.There is inconsistent information regarding the size effects of exogenously given hyaluronan on its in vivo fate. The data are often biased by the poor quality of hyaluronan and non-ideal labelling strategies used for resolving exogenous/endogenous hyaluronan, which only monitor the label and not hyaluronan itself. To overcome these drawbacks and establish the pharmacokinetics of intravenous hyaluronan in relation to its Mw, 13C-labelled HA of five Mws from 13.6-1562 kDa was prepared and administered to mice at doses 25-50 mg kg-1. The elimination efficiency increased with decreasing Mw. Low Mw hyaluronan was rapidly eliminated as small hyaluronan fragments in urine, while high Mw hyaluronan exhibited saturable kinetics and complete metabolization within 48 h. All tested Mws exhibited a similar uptake by liver cells and metabolization into activated sugars. 13C-labelling combined with LC-MS provides an excellent approach to elucidating in vivo fate and biological activities of hyaluronan.