Davidsenoneil4616
ould not only be a chimera virusresulting from recombination of the bat RaTG13 and Guangdong pangolin coronaviruses but also a close relative of the bat CoV ZC45 and ZXC21 strains. They also indicate that a GD pangolin may be an intermediate host ofthis dangerous virus.
The results of our horizontal gene transfer and recombination analysis suggest that SARS-CoV-2 could not only be a chimera virus resulting from recombination of the bat RaTG13 and Guangdong pangolin coronaviruses but also a close relative of the bat CoV ZC45 and ZXC21 strains. They also indicate that a GD pangolin may be an intermediate host of this dangerous virus.
The Scolopacidae family (Suborder Scolopaci, Charadriiformes) is composed of sandpipers and snipes; these birds are long-distance migrants that show great diversity in their behavior and habitat use. Cytogenetic studies in the Scolopacidae family show the highest diploid numbers for order Charadriiformes. This work analyzes for the first time the karyotype of Actitis macularius by classic cytogenetics and chromosome painting.
The species has a diploid number of 92, composed mostly of telocentric pairs. This high 2n is greater than the proposed 80 for the avian ancestral putative karyotype (a common feature among Scolopaci), suggesting that fission rearrangements have formed smaller macrochromosomes and microchromosomes. Fluorescence in situ hybridization using Burhinus oedicnemus whole chromosome probes confirmed the fissions in pairs 1, 2, 3, 4 and 6 of macrochromosomes.
Comparative analysis with other species of Charadriiformes studied by chromosome painting together with the molecular phylogenies for the order allowed us to raise hypotheses about the chromosomal evolution in suborder Scolopaci. this website From this, we can establish a clear idea of how chromosomal evolution occurred in this suborder.
Comparative analysis with other species of Charadriiformes studied by chromosome painting together with the molecular phylogenies for the order allowed us to raise hypotheses about the chromosomal evolution in suborder Scolopaci. From this, we can establish a clear idea of how chromosomal evolution occurred in this suborder.
Pyrenoids are protein microcompartments composed mainly of Rubisco that are localized in the chloroplasts of many photosynthetic organisms. Pyrenoids contribute to the CO
-concentrating mechanism. This organelle has been lost many times during algal/plant evolution, including with the origin of land plants. The molecular basis of the evolutionary loss of pyrenoids is a major topic in evolutionary biology. Recently, it was hypothesized that pyrenoid formation is controlled by the hydrophobicity of the two helices on the surface of the Rubisco small subunit (RBCS), but the relationship between hydrophobicity and pyrenoid loss during the evolution of closely related algal/plant lineages has not been examined. Here, we focused on, the Reticulata group of the unicellular green algal genus Chloromonas, within which pyrenoids are present in some species, although they are absent in the closely related species.
Based on de novo transcriptome analysis and Sanger sequencing of cloned reverse transcription-polymerase chain reaction products, rbcS sequences were determined from 11 strains of two pyrenoid-lacking and three pyrenoid-containing species of the Reticulata group. We found that the hydrophobicity of the RBCS helices was roughly correlated with the presence or absence of pyrenoids within the Reticulata group and that a decrease in the hydrophobicity of the RBCS helices may have primarily caused pyrenoid loss during the evolution of this group.
Although we suggest that the observed correlation may only exist for the Reticulata group, this is still an interesting study that provides novel insight into a potential mechanism determining initial evolutionary steps of gain and loss of the pyrenoid.
Although we suggest that the observed correlation may only exist for the Reticulata group, this is still an interesting study that provides novel insight into a potential mechanism determining initial evolutionary steps of gain and loss of the pyrenoid.
Although mitochondrial DNA (mtDNA) of many animals tends to mutate at higher rates than nuclear DNA (nuDNA), a recent survey of mutation rates of various animal groups found that the gastropod family Bradybaenidae (suborder Helicina) shows a nearly 40-fold difference in mutation rates of mtDNA ([Formula see text]
) and nuDNA ([Formula see text]
), while other gastropod taxa exhibit only two to five-fold differences. To determine if Bradybaenidae represents an outlier within Gastropoda, I compared estimated values of [Formula see text]
/[Formula see text]
of additional gastropod groups. In particular, I reconstructed mtDNA and nuDNA gene trees of 121 datasets that include members of various clades contained within the gastropod subclasses Caenogastropoda, Heterobranchia, Patellogastropoda, and Vetigastropoda and then used total branch length estimates of these gene trees to infer [Formula see text]
/[Formula see text]
.
Estimated values of [Formula see text]
/[Formula see text]
range from 1.4 to ly diversified.
Gastropods exhibit considerable variation in estimates of [Formula see text]m/[Formula see text]n. Large values of [Formula see text]m/[Formula see text]n that have been calculated for Bradybaenidae and other gastropod taxa may be overestimated due to possible sampling artifacts or processes that depress estimates of total molecular divergence of nuDNA in groups that recently diversified.
Heterobranchia is a diverse clade of marine, freshwater, and terrestrial gastropod molluscs. It includes such disparate taxa as nudibranchs, sea hares, bubble snails, pulmonate land snails and slugs, and a number of (mostly small-bodied) poorly known snails and slugs collectively referred to as the "lower heterobranchs". Evolutionary relationships within Heterobranchia have been challenging to resolve and the group has been subject to frequent and significant taxonomic revision. Mitochondrial (mt) genomes can be a useful molecular marker for phylogenetics but, to date, sequences have been available for only a relatively small subset of Heterobranchia.
To assess the utility of mitochondrial genomes for resolving evolutionary relationships within this clade, eleven new mt genomes were sequenced including representatives of several groups of "lower heterobranchs". Maximum likelihood analyses of concatenated matrices of the thirteen protein coding genes found weak support for most higher-level relationships even after several taxa with extremely high rates of evolution were excluded.