Danielsenboye7180
The characterization of selenoneine in the brain, representing between 78 and 88% of the total Se, suggests a crucial role in the nervous system. The dramatic decrease of selenoneine (from 68 to 3%) with an increase of Hg concentrations in the liver strongly supports the hypothesis of its key role in Hg detoxification.We report on the mechanism for hydrogen-induced topotactic phase transitions in perovskite (PV) oxides using La0.7Sr0.3MnO3 as a prototypical example. Hydrogenation starts with lattice expansion confirmed by X-ray diffraction (XRD). The strain- and oxygen-vacancy-mediated electron-phonon coupling in turn produces electronic structure changes that manifest through the appearance of a metal insulator transition accompanied by a sharp increase in resistivity. The ordering of initially randomly distributed oxygen vacancies produces a PV to brownmillerite phase (La0.7Sr0.3MnO2.5) transition. This phase transformation proceeds by the intercalation of oxygen vacancy planes confirmed by in situ XRD and neutron reflectometry (NR) measurements. Despite the prevailing picture that hydrogenation occurs by reaction with lattice oxygen, NR results are not consistent with deuterium (hydrogen) presence in the La0.7Sr0.3MnO3 lattice at steady state. The film can reach a highly oxygen-deficient La0.7Sr0.3MnO2.1 metastable state that is reversible to the as-grown composition simply by annealing in air. Theoretical calculations confirm that hydrogenation-induced oxygen vacancy formation is energetically favorable in La0.7Sr0.3MnO3. The hydrogenation-driven changes of the oxygen sublattice periodicity and the electrical and magnetic properties similar to interface effects induced by oxygen-deficient cap layers persist despite hydrogen not being present in the lattice.Four new complexes containing the bis(pentamethylcyclopentadienyl)thorium(IV) moiety, Cp*2Th(L1)(Me) (Th2), Cp*2Th(L2)(Me) (Th3), Cp*2Th(L1)Cl (Th5), and Cp*2Th(L2)Cl (Th6), were synthesized in quantitative yields via the protonolysis reaction of the metallocene precursor complexes Cp*2Th(Me)2 (Th1) and Cp*2Th(Me)Cl (Th4) and the respective six- and seven-membered N-heterocyclic neutral imine ligands L1H and L2H. OGL002 The molecular structures of all the complexes were established by single-crystal X-ray structure analyses. The synthesized complexes along with the precursor complexes were employed as catalysts for the cyanosilylation reaction of ketones with trimethylsilyl cyanide (Me3SiCN). The removal of the iminato ligand is necessary to trigger the reaction, allowing the formation of the active catalyst.Distinguished by the coupled catalysis-facilitated high turnover and admirable specificity, enzyme cascades have sparked tremendous attention in bioanalysis. However, three-enzyme cascade-based versatile platforms have rarely been explored without resorting to tedious immobilization procedures. Herein, we have demonstrated that formamide-converted transition metal-nitrogen-carbon (f-MNC, M = Fe, Cu, Mn, Co, Zn) with a high loading of atomically dispersed active sites possesses intrinsic peroxidase-mimetic activity following the activity order of f-FeNC > f-CuNC > f-MnNC > f-CoNC > f-ZnNC. Ulteriorly, benefitting from the greatest catalytic performance and explicit catalytic mechanism of f-FeNC, versatile enzyme cascade-based colorimetric bioassays for ultrasensitive detection of diabetes-related glucose and α-glucosidase (α-Glu) have been unprecedentedly devised using f-FeNC-triggered chromogenic reaction of 3,3',5,5'-tetramethylbenzidine as an amplifier. Notably, several types of α-Glu substrates can be effectively utilized in this three-enzyme cascade-based α-Glu assay, and it can be further employed for screening α-Glu inhibitors that are used as antidiabetic and antiviral drugs. These versatile assays can also be extended to detect other H2O2-generating or -consuming biomolecules and other bioenzymes that are capable of catalyzing glucose generation procedures. These nanozyme-involved multienzyme cascades without intricate enzyme-engineering techniques may provide a concept to facilitate the deployment of nanozymes in celestial versatile bioassay fabrication, disease diagnosis, and biomedicine.BaSi2 is a promising absorber material for next-generation thin-film solar cells (TFSCs). For high-efficiency TFSCs, a suitable interlayer should be found for every light absorber. However, such an interlayer has not been studied for BaSi2. In this study, we investigated amorphous Zn1-xGexOy films as interlayers for BaSi2. The Zn/Ge atomic ratio in the Zn1-xGexOy film and the optical band gap depend on the substrate temperature during sputtering deposition. A suitable i-Zn1-xGexOy/BaSi2 heterointerface with spike-type conduction band offset was achieved when Zn1-xGexOy was deposited on BaSi2 at 50 °C. Furthermore, photoresponsivity measurements revealed that Zn1-xGexOy has an excellent surface passivation effect on BaSi2. When the thickness of Zn1-xGexOy was 2 nm, a high photoresponsivity of 0.9 A/W was obtained for a 500 nm thick BaSi2 layer at a wavelength of 780 nm under an applied bias voltage of 0.5 V between the front and rear electrodes, where the photoresponsivity in the short-wavelength region was significantly improved compared with that of BaSi2 capped with an amorphous Si layer. X-ray photoelectron spectroscopy revealed that the Zn1-xGexOy films suppressed the oxidation of the BaSi2 surface, decreasing the carrier recombination rate. This is the first demonstration of passivation interlayers for BaSi2 with suitable band alignment for carrier transport and surface passivation effects.The preparation of complex molecules (e.g., biologically active secondary metabolites) remains an important pursuit in chemical synthesis. By virtue of their sophisticated architectures, complex natural products inspire total synthesis campaigns that can lead to completely new ways of building molecules. In the twentieth century, one such paradigm which emerged was the use of naturally occurring "chiral pool terpenes" as starting materials for total synthesis. These inexpensive and naturally abundant molecules provide an easily accessed source of enantioenriched material for the enantiospecific preparation of natural products. The most common applications of chiral pool terpenes are in syntheses where their structure can, entirely or largely, be superimposed directly onto a portion of the target structure. Less straightforward uses, where the structure of the starting chiral pool terpene is not immediately evident in the structure of the target, can be more challenging to implement. Nevertheless, these "noninatalyzed C-C cleavage/cross-coupling that facilitated the assembly of the core [3.3.1]bicycle that is resident in the natural product structure.Metal processing using microorganisms has many advantages including the potential for reduced environmental impacts as compared to conventional technologies.Acidithiobacillus ferrooxidansis an iron- and sulfur-oxidizing chemolithoautotroph that is known to participate in metal bioleaching, and its metabolic capabilities have been exploited for industrial-scale copper and gold biomining. In addition to bioleaching, microorganisms could also be engineered for selective metal binding, enabling new opportunities for metal bioseparation and recovery. Here, we explored the ability of polyhistidine (polyHis) tags appended to two recombinantly expressed endogenous proteins to enhance the metal binding capacity of A. ferrooxidans. The genetically engineered cells achieved enhanced cobalt and copper binding capacities, and the Langmuir isotherm captures their interaction behavior with these divalent metals. Additionally, the cellular localization of the recombinant proteins correlated with kinetic modeling of the binding interactions, where the outer membrane-associated polyHis-tagged licanantase peptide bound the metals faster than the periplasmically expressed polyHis-tagged rusticyanin protein. The selectivity of the polyHis sequences for cobalt over copper from mixed metal solutions suggests potential utility in practical applications, and further engineering could be used to create metal-selective bioleaching microorganisms.Ion exchange membranes with strong ionic separation performance have strategic importance for resource recovery and water purification, but the current state-of-the-art membranes suffer from inadequate ion selective transport for the target ions. This work proposes a new class of zeolitic imidazolate framework (ZIF)-based anion exchange membranes (named as S@ZIF-AMX) with suppressed multivalent anion mobility and enhanced target ion transport via an ionic control strategy under alternating current driven assembly. In electrodialysis with an initial concentration of 50 mM of NaBr, NaCl, Na2SO4, and Na3PO4 (mixed feed) and a current density of 10 mA cm-2, the S@ZIF-AMX membrane demonstrated an excellent transport of the target ion (Cl-) based on the synergy between the Cl- regulated ZIF cavity and the electrostatic interaction with sulfonic groups. The separation efficiency and permselectivity of PO43-/Cl- through S@ZIF-AMX largely increased to 83% and 32, respectively, compared to 42% and 4.0 of the pristine AMX membrane (a commercial anion exchange membrane), respectively. Furthermore, the separation between SO42- and Cl- was also enhanced, the separation efficiency and permselectivity of SO42-/Cl- increased from 11% and 1.4 to 45% and 4.3, respectively. In addition, the combined strategy developed in the S@ZIF-AMX membrane was proven effective in promoting Cl- transport by shifting the separation equilibrium of the ion pair Br-/Cl-, which is known to be extremely challenging. This work provides a new design strategy toward pushing the limits of current ion exchange membranes for target ion separation in water, resource, and energy applications.Cytochrome P450s are one of the most versatile oxidases that catalyze significant and unique chemical transformations for the construction of complex structural frameworks during natural product biosynthesis. Here, we discovered a set of P450s, including SdnB, SdnH, SdnF, and SdnE, that cooperatively catalyzes the reshaping of the inert cycloaraneosene framework to form a highly oxidized and rearranged sordarinane architecture. Among them, SdnB is confirmed to be the first P450 (or oxidase) that cleaves the C-C bond of the epoxy residue to yield formyl groups in pairs. SdnF selectively oxidizes one generated formyl group to a carboxyl group and accelerates the final Diels-Alder cyclization to furnish the sordarinane architecture. Our work greatly enriches the enzyme functions of the P450 superfamily, supplies the missing skills of the P450 synthetic toolbox, and supports them as biocatalysts in further applications toward the synthesis of new chemical entities.The electrochemical CO2 reduction into formate acid over Pd-based catalysts under a wide potential window is a challenging task; CO poisoning commonly occurring on the vulnerable surface of Pd must be overcome. Herein, we designed a two-dimensional (2D) AuNP-in-PdNS electrocatalyst, in which the Au nanoparticles are intercalated in Pd nanosheets, for formate production under a wide potential window from -0.1 to -0.7 V versus a reversible hydrogen electrode. Based on the X-ray absorption spectra (XAS) characterizations, CO accumulation detection, and CO stripping voltammetry measurements, we observed that the intercalated Au nanoparticles could effectively avoid the CO formation and boost the formate production on the Pd nanosheet surface by regulating its electronic structure.