Daltonporterfield9508
The ligands that showed low binding energy were further predicted for and pharmacokinetic properties and Lipinski's rule of 5 and the results are tabulated and discussed. Molecular dynamics simulations were performed for 50 ns for those compounds using the Desmond package, Schrödinger to assess the conformational stability and fluctuations of protein-ligand complexes during the simulation. Thus, the natural compounds could act as a lead for the COVID-19 regimen after in-vitro and in- vivo clinical trials. Communicated by Ramaswamy H. Sarma.The current coronavirus disease 2019 (COVID-19) pandemic was the result of the rapid transmission of a highly pathogenic coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for which there is no efficacious vaccine or therapeutic. Toward the development of a vaccine, here we expressed and evaluated as potential candidates four versions of the spike (S) protein using an insect cell expression system receptor binding domain (RBD), S1 subunit, the wild-type S ectodomain (S-WT), and the prefusion trimer-stabilized form (S-2P). We showed that RBD appears as a monomer in solution, whereas S1, S-WT, and S-2P associate as homotrimers with substantial glycosylation. Cryo-electron microscopy analyses suggested that S-2P assumes an identical trimer conformation as the similarly engineered S protein expressed in 293 mammalian cells but with reduced glycosylation. Overall, the four proteins confer excellent antigenicity with convalescent COVID-19 patient sera in enzyme-linked immunosorbent assay (ELISA), yet show distinct reactivities in immunoblotting. read more RBD, S-WT and S-2P, but not S1, induce high neutralization titres (>3-log) in mice after a three-round immunization regimen. The high immunogenicity of S-2P could be maintained at the lowest dose (1 μg) with the inclusion of an aluminium adjuvant. Higher doses (20 μg) of S-2P can elicit high neutralization titres in non-human primates that exceed 40-times the mean titres measured in convalescent COVID-19 subjects. Our results suggest that the prefusion trimer-stabilized SARS-CoV-2 S-protein from insect cells may offer a potential candidate strategy for the development of a recombinant COVID-19 vaccine.Using a model of transactional resilience, this study examined the development of resilience in relation to stressors experienced by sexual minority women throughout the life course. Twenty-five urban women were interviewed about their experiences related to gender and sexuality in Indian society. Thematic analysis was used to analyse the data. Findings showed that women experienced implicit and explicit forms of sexism and heterosexism, making it difficult to survive in a patriarchal and heteronormative society. Several resilience factors were identified reflected in women's efforts to deal with stressors to maintain and create support. Positive characteristics and smart strategies helped participants survive stressful events and maintain healthy relations with others. They also helped them by creating a safe and positive social environment. Findings point to the need to better understand the resilience process among similar populations of women in societies like India, where patriarchy and unequal opportunities affect wellbeing and quality of life.Oncogenic mutations in the kinase domain of the B-Raf protein have long been associated with cancers involving the MAPK pathway. One constitutive MAPK activating mutation in B-Raf, the V600E (valine to glutamate) replacement occurring adjacent to a site of threonine phosphorylation (T599) occurs in many types of cancer, and in a large percentage of certain cancers, such as melanoma. Because ATP binding activity and the V600E mutation are both known to alter the physical behavior of the activation loop in the B-Raf ATP binding domain, this system is especially amenable to comparative analyses of molecular dynamics simulations modeling various genetic and drug class variants. Here, we employ machine learning enabled identification of functionally conserved protein dynamics to compare how the binding interactions of four B-Raf inhibitors impact the functional loop dynamics controlling ATP activation. We demonstrate that drug development targeting B-Raf has progressively moved towards ATP competitive inhibitors that demonstrate less tendency to mimic the functionally conserved dynamic changes associated with ATP activation and leading to the side effect of hyperactivation (i.e. inducing MAPK activation in non-tumorous cells in the absence of secondary mutation). We compare the functional dynamic impacts of V600E and other sensitizing and drug resistance causing mutations in the regulatory loops of B-Raf, confirming sites of low mutational tolerance in these regions. Lastly, we investigate V600E sensitivity of B-Raf loop dynamics in an evolutionary context, demonstrating that while sensitivity has an ancient origin with primitive eukaryotes, it was also secondarily increased during early jawed vertebrate evolution. Communicated by Ramaswamy H. Sarma.The present investigation grounded on estimation of electron properties of the structures of EGFR proteins-ligand complexes using our laboratory-developed methodology AlteQ approach, which describes the molecular electron density of the complex in space for a certain point in three-dimensional coordinates. Briefly, the system embodies molecular electron density as a sum of Slater's type atomic increments of the molecular system. Further, using this methodology, we calculated different electron characteristics of selected EGFR protein-ligand complexes and established the relationship between different electron properties with their experimental pharmacological activity value (pIC50). The study suggested that EGFR inhibitory activity has higher correlation with intermolecular contacts of H with pi-system of aromatic ring between protein and ligands. Therefore, this created model has impact to identify and design potential ligands against EGFR in anticancer drug discovery. Communicated by Ramaswamy H. Sarma.The outbreak of the recent coronavirus (SARS-CoV-2), which causes a severe pneumonia infection, first identified in Wuhan, China, imposes significant risks to public health. Around the world, researchers are continuously trying to identify small molecule inhibitors or vaccine candidates by targeting different drug targets. The SARs-CoV-2 macrodomain-I, which helps in viral replication and hijacking the host immune system, is also a potential drug target. Hence, this study targeted viral macrodomain-I by using drug similarity, virtual screening, docking and re-docking approaches. A total of 64,043 compounds were screened, and potential hits were identified based on the docking score and interactions with the key residues. The top six hits were subjected to molecular dynamics simulation and Free energy calculations and repeated three times each. The per-residue energy decomposition analysis reported that these compounds significantly interact with Asp22, Ala38, Asn40, Val44, Phe144, Gly46, Gly47, Leu127, Ser128, Gly130, Ile131, Phe132 and Ala155 which are the critical active site residues.