Dalrymplewhalen8767

Z Iurium Wiki

Nonstructural protein 1 (NS1) of the influenza A virus is a major contributor to the virulence of the seasonal influenza A viruses, in part because it interferes with host viral defense mechanisms. SUMOylation regulates NS1 activity, and several residues of NS1 have been identified with traditional biochemical approaches as acceptor sites for SUMOylation. In this study, we developed a novel FRET assay to assess SUMOylation. Using this assay, we demonstrated that the lysine residue K131 in the effector domain of NS1 is a previously unidentified SUMO acceptor site. A recombinant H1N1 influenza A virus (A/PR/8/34) expressing a K131 SUMOylation-deficient NS1 had a significantly lower growth rate than the wild-type virus. These results suggest that NS1 SUMOylation at K131 is required for the rapid replication of H1N1 influenza viruses. The interaction between the NS1 protein and the host SUMOylation components may serve as a novel target for the development of anti-influenza A drugs.Trichomonas vaginalis is a protozoan parasite that causes trichomoniasis, the most prevalent non-viral sexually transmitted infection worldwide. Trichomonas vaginalis releases extracellular vesicles that play a role in parasiteparasite and parasitehost interactions. The aim of this study was to characterise the RNA cargo of these vesicles. Trichomonas vaginalis extracellular vesicles were found to encapsulate a cargo of RNAs of small size. RNA-seq analysis showed that tRNA-derived small RNAs, mostly 5' tRNA halves, are the main type of small RNA in these vesicles. The tRNA-derived small RNAs in T. vaginalis extracellular vesicles were shown to be derived from the specific processing of tRNAs within cells. The specificity of this RNA cargo in T. vaginalis extracellular vesicles suggests a preference for packaging. The RNA cargo of T. vaginalis was shown to be rapidly internalised by human cells via lipid raft-dependent endocytosis. The potential role of these tsRNAs - an emerging class of small RNAs with regulatory functions - on altering host cellular responses requires further examination, suggesting a new mode of parasitehost communication.The trypanosomatids Crithidia mellificae and Lotmaria passim are very prevalent in honey bee colonies and potentially contribute to colony losses that currently represent a serious threat to honey bees. However, potential pathogenicity of these trypanosomatids remains unclear and since studies of infection are scarce, there is little information about the virulence of their different morphotypes. Hence, we first cultured C. mellificae and L. passim (ATCC reference strains) in six different culture media to analyse their growth rates and to obtain potentially infective morphotypes. Both C. mellificae and L. passim grew in five of the media tested, with the exception of M199. These trypanosomatids multiplied fastest in BHI medium, in which they reached a stationary phase after around 96 h of growth. Honey bees inoculated with either Crithidia or Lotmaria died faster than control bees and their mortality was highest when they were inoculated with 96 h cultured L. passim. Histological and Electron Microscopy analyses revealed flagellated morphotypes of Crithidia and Lotmaria in the lumen of the ileum, and adherent non-flagellated L. passim morphotypes covering the epithelium, although no lesions were evident. These data indicate that parasitic forms of these trypanosomatids obtained from the early stationary growth phase infect honey bees. Therefore, efficient infection can be achieved to study their intra-host development and to assess the potential pathogenicity of these trypanosomatids.Amoebiasis is a parasitic infection of the human large intestine caused by Entamoeba histolytica; this disease mainly affects people from developing countries. To survive, this primitive protozoan has a high demand for iron, and it uses host iron proteins upon invasion. Transferrin (Tf) is a plasma iron-binding protein that transports and delivers iron to all cells. Iron-loaded Tf (holoTf) in humans can support the proliferation of amoebae in vitro by binding to an amoebic TfR (EhTfR), and amoebae endocytose it inside clathrin-coated vesicles. In this study, it was found that EhTfR phosphorylation is required for human holoTf endocytosis by E. histolytica. Once this complex is endocytosed, human holoTf could be degraded with a nutritional purpose by cysteine proteases. HoloTf endocytosis initiates the activation of the mitogen-activated protein kinases (MAPKs) and focal adhesion kinase (FAK) pathways, which induce cell proliferation with phosphoinositide 3-kinase (PI-3 K) and Ca2+ involvement. In the first minutes after holoTf is endocytosed, several proteins are phosphorylated including transketolase, enolase, L-myo-inositol-1-phosphate synthase and phosphoglucomutase, which control carbohydrate metabolism, and heat shock protein-70. The study of these proteins and their signal transduction pathways could be useful for developing future therapies.Epigenetic mechanisms such as histone acetylation and deacetylation participate in regulation of the genes involved in encystation of Entamoeba invadens. However, the histones and target residues involved, and whether the acetylation and deacetylation of the histones leads to the regulation of gene expression associated with the encystation of this parasite, remain unknown. In this study, we found that E. invadens histone H4 is acetylated in both stages of the parasite and is more highly acetylated during the trophozoite stage than in the cyst. Histone hyperacetylation induced by Trichostatin A negatively affects the encystation of E. PCNA-I1 invadens, and this inhibition is associated with the downregulation of the expression of genes implicated in the synthesis of chitin, polyamines, gamma-aminobutyric acid pathways and cyst wall proteins, all of which are important in the formation of cysts. Finally, in silico analysis and activity assays suggest that a class I histone deacetylase (EiHDAC3) could be involved in control of the expression of a subset of genes that are important in several pathways during encystation. Therefore, the identification of enzymes that acetylate and/or deacetylate histones that control encystation in E. invadens could be a promising therapeutic target for preventing transmission of other amoebic parasites such as E. histolytica, the causative agent of amoebiasis in humans.

Autoři článku: Dalrymplewhalen8767 (Christie Knudsen)