Cummingsknudsen1913

Z Iurium Wiki

g., ACE2. By profiling the serum IgG and IgA from 32 COVID-19 patients and 36 healthy patients, the HCoV protein microarray demonstrated 97% sensitivity and 97% specificity with two biomarkers. The results also showed the cross-reactivity of IgG and IgA in COVID-19 patients to spike proteins from various coronaviruses, including that from SARS-CoV, HKU1-CoV, and OC43-CoV. Finally, an innate immune protein named surfactant protein D showed broad affinities to spike proteins in all human coronaviruses. Overall, the HCoV protein microarray is multiplexed, sensitive, and specific, which is useful in diagnosis, immune assessment, biological development, and drug screening.Developing an electrochemiluminescence (ECL) coreactant to minimize the biotoxicity and to maximize the enhancement factor is critical to single-cell ECL microscopy. Here, we reported a guanine-rich single-stranded DNA (G-ssDNA)-loaded high-index faceted gold nanoflower (Hi-AuNF) as a synergistic coreactant of Ru(bpy)32+ for single-cell ECL imaging. Because of the excellent catalytic performance and huge specific surface area, Hi-AuNF serves as not only an ECL enhancer but also a carrier for G-ssDNA. Guanine in G-ssDNA specifically reacts with Ru(bpy)32+ through a so-called "catalytic route" and thus significantly enhances the ECL signal of Ru(bpy)32+. To endow targeting ability to the synergistic coreactant, an aptamer of carcinoembryonic antigen (CEA) is incorporated into the G-ssDNA to form G-ssDNA-Apt for the recognition of human breast adenocarcinoma cells, which overexpress CEA on the cytomembrane. Accordingly, the ECL imaging of CEA on the cytomembrane was realized by using the highly selective Hi-AuNF@G-ssDNA-Apt as the probe as well as the luminophore of Ru(bpy)32+. Compared with the common coreactant tripropylamine with high toxicity and volatility, the Hi-AuNF@G-ssDNA-Apt is considered as a high-performance and biocompatible coreactant, providing exciting opportunities in single-cell imaging and detection.Volume expansion hinders conversion-type transition-metal oxides (TMOs) as potential anode candidates for high-capacity lithium-ion batteries. While nanostructuring and nanosizing have been employed to improve the cycling stability of TMOs, we show here that both high initial Coulombic efficiency (ICE) and stable cycling reversibility are achieved in the layered compound Li0.9Nb0.9Mo1.1O6 (L0.9NMO) by inherent properties of the bulk crystal structure. In this model, MoO6 octahedra as active centers react with lithium ions and endow capacity, while a grid composed of NbO6 octahedra effectively suppresses the volume expansion, enhances the conductivity, and supports the structural skeleton from collapse. As a result, bulk L0.9NMO not only delivers a high discharge capacity of 1128 mA h g-1 at 100 mA g-1 with a considerable ICE of 87% but also exhibits long cycling stability and good rate performance (339 mA h g-1 after 500 cycles at 1 A g-1 with an average Coulombic efficiency approaching 100%). The self-confined structure provides a competitive strategy for stable conversion-type lithium storage.Triplet carbenes (TCs) are of great interest due to their magnetic properties and reactivity, which descend from TCs' unique electronic state. However, the reactivity and stability of TCs are usually a trade-off, and it is difficult to achieve both at the same time. In this work, we were able to enhance the thermal stability of a TC species while maintaining its reactivity by confining them in the nanospace of a metal-organic framework (MOF). We synthesized a new MOF using a TC precursor; subsequently, TCs were generated by photostimulation. The TCs generated in the MOF nanospace were detectable up to 170 K, whereas their non-MOF-confined counterparts (bare ligand) could not be detected above 100 K. In addition, the reactivity of TC generated in MOF with O2 was drastically improved compared to that of bare ligand. Our approach is generally applicable to the stabilization of highly reactive species, whose reactivity needs to be preserved.Functional ligands and polymers have frequently been used to yield target-specific bio-nanoconjugates. Herein, we provide a systematic insight into the effect of the chain length of poly(oligo (ethylene glycol) methyl ether acrylate) (POEGMEA) containing polyethylene glycol on the colloidal stability and antibody-conjugation efficiency of nanoparticles. click here We employed Reversible Addition-Fragmentation Chain Transfer (RAFT) to design diblock copolymers composed of 7 monoacryloxyethyl phosphate (MAEP) units and 6, 13, 35, or 55 OEGMEA units. We find that when the POEGMEA chain is short, the polymer cannot effectively stabilize the nanoparticles, and when the POEGMEA chain is long, the nanoparticles cannot be efficiently conjugated to antibody. In other words, the majority of the carboxylic groups in larger POEGMEA chains are inaccessible to further chemical modification. We demonstrate that the polymer containing 13 OEGMEA units can effectively bind up to 64% of the antibody molecules, while the binding efficiency drops to 50% and 0% for the polymer containing 35 and 55 OEGMEA units. Moreover, flow cytometry assay statistically shows that about 9% of the coupled antibody retained its activity to recognize B220 biomarkers on the B cells. This work suggests a library of stabile, specific, and bioactive lanthanide-doped nanoconjugates for flow cytometry and mass cytometry application.Transition metal catalyzed asymmetric hydrofunctionalization of readily available unsaturated hydrocarbons presents one of the most straightforward and atom-economic protocols to access valuable optically active products. For decades, noble transition metal catalysts have laid the cornerstone in this field, on account of their superior reactivity and selectivity. In recent years, from an economical and sustainable standpoint, first-row, earth-abundant transition metals have received considerable attention, due to their high natural reserves, affordable costs, and low toxicity. Meanwhile, the earth-abundant metal catalyzed hydrofunctionalization reactions have also gained much interest and been investigated gradually. However, since chiral ligand libraries for earth-abundant transition-metal catalysis are limited to date, the development of highly enantioselective versions remains a significant challenge.This Account summarizes our recent efforts in developing suitable chiral ligands for iron and cobalt catalysts and their applications in the highly enantioselective hydrofunctionalization reactions (hydroboration and hydrosilylation) of alkenes and alkynes.

Autoři článku: Cummingsknudsen1913 (Lam Hoppe)