Crowellmcintyre6317
Human environmental modifications have outpaced honey bees' ability to evolve adaptive regulation of foraging tactics, possibly including a tactic associated with extreme food shortage, honey robbing. Honey robbing is a high risk, high reward, and understudied honey bee tactic whereby workers attack and often kill neighboring colonies to steal honey. Humans have exacerbated the conditions that provoke such robbing and its consequences. We describe robbing as an individual-level and colony-level behavioral syndrome, implicating worker bees specialized for foraging, food processing, and defense. We discuss how colony signaling mechanisms could regulate this syndrome and then explore the ecological underpinnings of robbing-highlighting its unusual prevalence in the commonly managed Apis mellifera and outlining the conditions that provoke robbing. We advocate for studies that identify the cues that modulate this robbing syndrome. Additionally, studies that apply behavioral ecology modeling approaches to generate testable predictions about robbing could clarify basic bee biology and have practical implications for colony management.Attempts to control insect pests and disease vectors have a long history. Recently, new technology has opened a whole new range of possible methods to suppress or transform natural populations. But it has also become clear that a better understanding of the ecology of targeted populations is needed. One key parameter is mating behaviour. Often modified males are released which need to successfully reproduce with females while competing with wild males. Insect control techniques can be affected by target species' mating ecology, and conversely mating ecology is likely to evolve in response to manipulation attempts. A better understanding of (female) mating behaviour will help anticipate and overcome potential challenges, and thus make desirable outcomes more likely.Evolutionary traps are phenomena in which rapid environmental change causes environmental cues that historically guided adaptive behavioral or life-history decisions to become poor predictors of the consequences of such decisions for an organism's fitness. Evolutionary trap theory offers an ideal framework for understanding and mitigating the effects of ecological light pollution (ELP) on insects. selleck We emphasize the utility of an evolutionary trap perspective in demonstrating the importance of an integrated understanding of the sensory, behavioral, evolutionary, and demographic mechanisms underlying insect responses to ELP. We also highlight neglected areas of research where greater focus can help enhance understanding of how ELP affects the persistence, evolutionary trajectory, and population dynamics of insects across space and time.This study explored systemic immune changes in 11 subjects with X-linked retinoschisis (XLRS) in a phase I/IIa adeno-associated virus 8 (AAV8)-RS1 gene therapy trial (ClinicalTrials.gov NCT02317887). Immune cell proportions and serum analytes were compared to 12 healthy male controls. At pre-dosing baseline the mean CD4/CD8 ratio of XLRS subjects was elevated. CD11c+ myeloid dendritic cells (DCs) and the serum epidermal growth factor (EGF) level were decreased, while CD123+ plasmacytoid DCs and serum interferon (IFN)-γ and tumor necrosis factor (TNF)-α were increased, indicating that the XLRS baseline immune status differs from that of controls. XLRS samples 14 days after AAV8-RS1 administration were compared with the XLRS baseline. Frequency of CD11b+CD11c+ DCc was decreased in 8 of 11 XLRS subjects across all vector doses (1e9-3e11 vector genomes [vg]/eye). CD8+human leukocyte antigen-DR isotype (HLA-DR)+ cytotoxic T cells and CD68+CD80+ macrophages were upregulated in 10 of 11 XLRS subjects, along with increased serum granzyme B in 8 of 11 XLRS subjects and elevated IFN-γ in 9 of 11 XLRS subjects. The six XLRS subjects with ocular inflammation after vector application gave a modestly positive correlation of inflammation score to their respective baseline CD4/CD8 ratios. This exploratory study indicates that XLRS subjects may exhibit a proinflammatory, baseline immune phenotype, and that intravitreal dosing with AAV8-RS1 leads to systemic immune activation with an increase of activated lymphocytes, macrophages, and proinflammatory cytokines.Cholangiocarcinoma (CCA) is a highly aggressive malignancy with extremely poor prognoses. The oncogenic role and prognostic value of c-Myc in CCA is not well elucidated. WD repeat domain 5 (WDR5) is a critical regulatory factor directly interacting with c-Myc to regulate c-Myc recruitment at chromosomal locations, but the interaction of WDR5 and c-Myc in CCA was uncovered. In our study, we detected WDR5 and c-Myc expression in all CCA types, including intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA) CCA, and evaluated their prognostic significance. Consequently, we demonstrated that WDR5 was significantly correlated with poor prognosis of CCA and that WDR5 and c-Myc co-expression was a more sensitive prognostic factor. With in vitro and in vivo experiments and bioinformatics, we showed that WDR5 interacted with the Myc box IIIb (MBIIIb) motif of c-Myc and facilitated Myc-induced HIF1A transcription, thereby promoting the epithelial-mesenchymal transition (EMT), invasion, and metastasis of CCA. Moreover, WDR5 enhanced hypoxia-inducible factor 1 subunit α (HIF-1α) accumulation by binding with histone deacetylase 2 (HDAC2) and increasing histone 3 lysine 4 acetylation (H3K4ac) deacetylation of the prolyl hydroxylase domain protein 2 (PHD2) promoter, resulting in the attenuation of chromatin opening and PHD2 expression, and eventually leading to HIF-1α stabilization and accumulation. In conclusion, WDR5 facilitated EMT and metastasis of CCA by increasing HIF-1α accumulation in a Myc-dependent pathway to promote HIF-1α transcription and a Myc-independent pathway to stabilize HIF-1α.Ocular melanoma, including uveal melanoma (UM) and conjunctival melanoma (CM), is the most common and deadly eye cancer in adults. Both UM and CM originate from melanocytes and exhibit an aggressive growth pattern with high rates of metastasis and mortality. The integral membrane glycoprotein beta-secretase 2 (BACE2), an enzyme that cleaves amyloid precursor protein into amyloid beta peptide, has been reported to play a vital role in vertebrate pigmentation and metastatic melanoma. However, the role of BACE2 in ocular melanoma remains unclear. In this study, we showed that BACE2 was significantly upregulated in ocular melanoma, and inhibition of BACE2 significantly impaired tumor progression both in vitro and in vivo. Notably, we identified that transmembrane protein 38B (TMEM38B), whose expression was highly dependent on BACE2, modulated calcium release from endoplasmic reticulum (ER). Inhibition of the BACE2/TMEM38B axis could trigger exhaustion of intracellular calcium release and inhibit tumor progression.