Cookeburton8393

Z Iurium Wiki

Arsenic and antimony are coexisting cumulative environmental pollutants that cause severe and extensive biological toxicity. However, their interactions and toxic mechanisms in the liver remain to be fully elucidated. In this study, a total of sixty 4-week-old mice were divided into four groups and treated with 4 mg/kg arsenic trioxide (ATO) or/and 15 mg/kg antimony (Sb) for 60 days. The results demonstrated that biochemical indicators of hepatotoxicity (ALT, AST, ALP) were upregulated in all treated groups. Additionally, the oxidative burden of the liver was increased in the cotreated groups compared with the individual toxicant-treated groups. Meanwhile, mitochondrial injury, autophagosomes, hepatic-congestion and karyopyknosis were obviously observed in cotreated groups. Additionally, coupled with serum biochemical index (TG, TC), histopathology examination and metabolomics results, we found that cotreatment with ATO and Sb resulted in lipid metabolism disorder and steatosis of liver tissues. Our further investigation found that the levels of pro-apoptotic (Caspase-3, Caspase-9, Bax, P53, Cytc) and mitophagy (LC3-B, P62, PINK1, Parkin) indexes in the cotreated groups were markedly increased, whereas the levels of anti-apoptosis index (Bcl-2) were decreased. Collectively, these results show that co-exposure to ATO and Sb can cause abnormal liver energy metabolism and oxidative stress. Selleck Olaparib Moreover, mitophagy and apoptosis play important roles in the mechanisms of arsenic/antimony cytotoxicity to mouse livers.Chlorpyrifos (CP) is a typical organophosphorus insecticide, which poses serious threats to the natural environment and human health. Strategies for the fast elimination of CP and its toxic hydrolytic metabolite 3,5,6-trichloro-2(1H)-pyridianol (TCP) in drainage water are urgently needed. The fate of CP and TCP in microcosm-scale subsurface batch constructed wetlands (SSBCWs) was quantified with different macrophyte species under soda saline-alkaline (SSA) condition and effective intensification strategies were developed. The macrophyte species Canna indica outperformed Phragmites australis and Typha orientalis for CP and TCP removal in SSBCWs. Mass balance calculation indicates the fate of CP in SSBCWs was residue in water (≤8%), alkaline hydrolysis (18.93-57.42%), microbial degradation (37.75-61.91%), substrate adsorption (~4-14%), and macrophyte uptake (≤3%). The addition of ferric-carbon (Fe-C) as a substrate amendment in SSBCWs increased the CP removal percentage by 35% and reduced the effluent TCP concentration by ~70% during Day 1-4 on average compared with the unintensified control. Fe-C addition simplified the microbial community diversity, while increasing the relative abundance of Proteobacteria which tolerates the microelectrolytic environment. A single application of liquid microbial agent improved CP removal percentage by 84% and decreased the effluent TCP concentration by two orders of magnitude during Day 1-4. The hydraulic retention time for thorough removal of TCP reduced from over 8 d to 4 d. Although only two dominant microbial genera (i.e., Sphingomonas and Pseudomonas) adapted to the environment with CP and SSA, they accelerated CP and TCP degradation via their own metabolism and co-metabolism with other indigenous microorganisms.Pyraclostrobin, one of the most widely used fungicides globally, is highly toxic to aquatic organisms, which restricts its application in paddy fields. Most studies have focused on the molecular mechanism of pyraclostrobin toxicity; however, the exposure routes and target organs of pyraclostrobin in fish are poorly known. Here, we found that the lethal effects of aquatic exposure, head immersion, trunk immersion and oral exposure on the toxicity and accumulation of pyraclostrobin in adult zebrafish were different. The major pathway leading to pyraclostrobin accumulation, followed by high hazard to fish, was crossing over the gill rather than the intestine or skin. Additionally, serious histological abnormalities, mitochondrial dysfunction, energy deficiency and respiratory impairment occurred in the gills, while no overt change was observed in the heart and brain at the organic and cellular levels. This result suggested that the gill is the dominant portal and target organ of pyraclostrobin in fish, a fact that has been further verified by intravenous injection. The differences in the toxicity and translocation factor of crystalline and dissolved pyraclostrobin in fish demonstrated that reducing the concentration in the branchial environment is a vital direction for the future design of an effective toxicity regulation strategy to protect key sites from pyraclostrobin attack.The water use of societies results in multiple environmental and social impacts and is a fundamental component of sustainability. Correspondingly, water footprint studies have grown significantly in numbers over the last decade. However, these studies mostly account for the human appropriation of freshwater resources, while overlooking various alternative water resources. This paper responds to the growing need for a complete water footprint accounting and presents an extended framework of the blue water footprint, comprised of seven water types. A case study shows spatially-explicit and use-specific analysis of Israel's diverse water system. Israel's freshwater use accounts for only 40% of its total water use. Desalinated seawater and reused wastewater contribute 52% and 45% to the country's municipal and agricultural water use, respectively. The "original" blue water footprint assumes only freshwater use; thus, it overestimates the appropriation of natural water resources by humans. The extended blue water footprint accounts for seawater, brackish water, runoff, and reused wastewater along with surface water and fresh groundwater. It, therefore, estimates the human water use more accurately. Alternative water types' use has some adverse environmental and health impacts. These include high energy intensity due to desalination, soil salinization from brackish water irrigation, and human exposure to traces of pharmaceutical in drinking water due to treated wastewater irrigation. By acknowledging the water mix of different sectors and regions, the extended blue water footprint contributes to advancing a water-energy nexus analysis or accounting for various environmental and health impacts of water use.

Autoři článku: Cookeburton8393 (Bech Matthiesen)