Coateshartman4213

Z Iurium Wiki

0-AIS) or 2.7 times higher than that of dispersed AIS QDs (AIS-8.0). The formation of defects and their roles in PHE mechanisms are discussed. This work is expected to give some new insight for designing efficient non-cadmium/non-novel metal I-III-VI photocatalysts for boosting PHE.Rational construction of advanced bifunctional catalysts with dual-active-sites is still challenging for both oxygen reduction (ORR) and oxygen evolution reactions (OER). Herein, metal-doped dicyandiamide formaldehyde resin is innovatively exploited to synthesize N/Co/Fe/Ni multi-doped carbon nanotubes (denoted as CoFeNi@CNT) with metal-nitrogen-carbon (MNC) and CoFeNi nanoparticles as the ORR and OER active sites, respectively. Abundant active sites and high degree of graphitization enable CoFeNi@CNT with a high ORR half-wave potential of 0.82 V and a low OER overpotential of 440 mV at 10 mA cm-2, which are comparable or superior to noble-metal catalysts. Particularly, the CoFeNi@CNT air electrode of rechargeable Zn-air batteries shows remarkable open circuit potential (1.46 V), discharge power density (152.3 mW cm-2), specific capacity (814 mAh g-1), and cycling stability for more than 250 h. It is worth emphasizing that this synthesis strategy is rather simple, low-cost, high yield, and the proportion and amount of doped metal ions can be easily adjusted according to the needs for different applications.The van der Waals (vdW) integration enables to create heterostructures with intimate contact and bring new opportunities. However, it is not confined to layered materials but can also be generally extended to 3D materials. Multidimensional Bi2O3/BiVO4@graphene oxide (GO) van der Waals heterostructures are synthesized by one-pot wet chemistry method. Bi2O3/BiVO4 composite nanoparticles are self-assembled with GO framework by vdW interaction to form vdW heterostructures, in which GO framework allows short electron transport distance and rapid charge transfer and provides massive reactive sites. Such self-assembled heterostructures show a superior high photoactivity towards oxygen evolution with an enhanced oxygen generation rate of 1828 µmol h-1 g-1, nearly 3 times than that of pure BiVO4, attributed to the accelerated charge separation and transfer processes of Bi2O3/BiVO4@GO vdW heterostructures. This study indicates that our strategy provides a new avenue towards fabricating multi-dimensional vdW heterostructures and inspiring more innovative insights in oxygen evolution field.To attain superior energy density concurrently with high power density, high-performance supercapacitors have been developed. Herein an innovative strategy has been adopted to fabricate unique binder-free electrodes composed of a unique porous structure of binary metal carbonate hydroxide nanomace-decorated hydrothermal porous carbon spheres (PCSs). Hierarchical nickel-cobalt carbonate hydroxide (NiCOCH) nanomaces, directly grown on PCSs, are used as positive electrodes for supercapacitors fabrication. Furthermore, Fe2O3@PCS composites, having benefits of highly reversible redox reaction in the negative potential window and highly porous structure, are employed as the negative electrode in the fabrication of the asymmetric supercapacitors (ASCs). The assembled NiCoCH@PCS// Fe2O3@PCS asymmetric devices with a wide electrochemical potential window not only have the merit of high energy and power densities but also receive benefits from remarkable cycle stability. These encouraging outcomes that are mutually beneficial, make these fabricated ASCs significantly ideal for high-performance electronics.Iron-polyphenol nanoparticles are usually prepared with nontoxic plant polyphenols as a main building block, which are an emerging photothermal agent for photothermal therapy. However, till now, few works have been made on the controllable synthesis of iron-polyphenol nanoparticles with tunable composition, as well as investigation of the relationship between material composition and photothermal property. In the present study, iron-polyphenol colloidal nanoparticles with tunable diameter (21-303 nm) and ion content (9.2-97.6 mg/g), as well as high colloidal stability are successfully synthesized using different polyphenols (such as tannic acid, epigallocatechin gallate, gallic acid, epicatechin and proanthocyanidin) as a ligand. In addition, photothermal performance is highly dependent on the organic ligand, iron content and particle size. Higher iron content and smaller diameter can contribute to higher photothermal performance. The iron-polyphenol nanoparticles with the optimal iron content and particle size are selected as a photothermal agent. They can effectively inhibit the tumour growth in vivo. The current work demonstrates a general synthesis strategy for iron-polyphenol colloidal nanoparticles with tailorable composition and clarifies the relationship between material composition and photothermal performance. Moreover, it is conductive to the rational design of polyphenol-based photothermal agents for theranostic applications.

Electrospun metal oxide hollow tubes are of great interest owing to their unique structural advantages compared to solid nanofibers. Although intensive research on preparation of hollow tubes have been devoted, formation of hierarchical shells remains a significant challenge.

Herein, we demonstrate the fabrication of highly uniform, reproducible and industrially feasible ZnO hollow tubes (ZHT) with two-level hierarchical shells via a simple and versatile single-nozzle electrospinning strategy coupled with subsequent controlled thermal treatment.

The morphological investigation reveals that the hollow tubes built from nanostructures which has unique surface structure on their wall. The mechanism by which the composite fibers transferred to hollow tubes is primarily based on the evaporation rate of the polymeric template. Notably, tuning the heating rate from 5°C to 50°C/min possess adverse effect on formation of hollow tubes, thus subsequently produced ZnO nanoplates (ZNP). The comparative photocatalyticvident that the inherent abundant defects in the electrospun derived nanostructures are not only sufficient for improving the photocatalytic activity. Camostat supplier Studies on bacterial growth inhibition showcased a superior bactericidal effect against Staphylococcus aureus and Escherichia coli implying its potentiality for disinfecting the bacteria from water.

Autoři článku: Coateshartman4213 (Alexander Keene)