Churchillmcgarry9838

Z Iurium Wiki

ronal NO synthase is profoundly reduced early in disease progression, and potentially other neurologic diseases of aging with cerebrovascular dysfunction as part of their etiology.Tuberous sclerosis complex (TSC) is caused by mutations of either the TSC1 or TSC2 tumor suppressor gene. TSC causes tumors of the brain, heart, kidney, skin and lymphangioleiomyomatosis (LAM). Here we report that the TSC2 protein physically binds to high-density lipoprotein binding protein (HDLBP), also called vigilin, a core stress granule (SG) protein, and that TSC2 localizes to SGs. SGs contain mRNAs and translation initiation complexes, and regulate gene expression by sequestering specific transcripts, thereby serving a cytoprotective role. TSC2 has never before been shown to localize to SGs and knocking down vigilin impacts SG translocation of TSC2. TSC2-deficient cells showed a striking increase in the number of SGs after thermal shock and arsenite treatment relative to Tsc2-expressing cells. Our findings also show that murine kidney lysates from a model of TSC have increased levels of SG components including G3BP1 and Caprin1. G3BP1 and Caprin are elevated in renal angiomyolipomas (a renal tumor common in patients with TSC) compared with control normal kidney. G3BP1 is also elevated in TSC-associated subependymal giant cell astrocytomas. We found that genetic inhibition of G3BP1 inhibits the proliferation of TSC2-deficient cells in vitro. Finally, in a mouse model of TSC, genetic inhibition of SGs suppresses cell growth, suggesting that targeting SGs may have efficacy in the therapy of TSC. IMPLICATIONS This study demonstrates that TSC2 physically interacts with HDLBP/vigilin, a component of SGs, that TSC2 localizes to SG and that TSC2-deficient cells have more SGs, suggesting that SGs represent a novel therapeutic target in TSC.Only a subset of patients responds to immune checkpoint blockade (ICB) in melanoma. A preclinical model recapitulating the clinical activity of ICB would provide a valuable platform for mechanistic studies. We used melanoma tumors arising from an Hgftg;Cdk4R24C/R24C genetically engineered mouse (GEM) model to evaluate the efficacy of an anti-mouse PD-L1 antibody similar to the anti-human PD-L1 antibodies durvalumab and atezolizumab. Consistent with clinical observations for ICB in melanoma, anti-PD-L1 treatment elicited complete and durable response in a subset of melanoma-bearing mice. We also observed tumor growth delay or regression followed by recurrence. For early treatment assessment, we analyzed gene expression profiles, T-cell infiltration, and T-cell receptor (TCR) signatures in regressing tumors compared with tumors exhibiting no response to anti-PD-L1 treatment. We found that CD8+ T-cell tumor infiltration corresponded to response to treatment, and that anti-PD-L1 gene signature response indicated an increase in antigen processing and presentation, cytokine-cytokine receptor interaction, and natural killer cell-mediated cytotoxicity. TCR sequence data suggest that an anti-PD-L1-mediated melanoma regression response requires not only an expansion of the TCR repertoire that is unique to individual mice, but also tumor access to the appropriate TCRs. Thus, this melanoma model recapitulated the variable response to ICB observed in patients and exhibited biomarkers that differentiate between early response and resistance to treatment, providing a valuable platform for prediction of successful immunotherapy. IMPLICATIONS Our melanoma model recapitulates the variable response to anti-PD-L1 observed in patients and exhibits biomarkers that characterize early antibody response, including expansion of the TCR repertoire.The 1986 Chernobyl nuclear power plant accident increased papillary thyroid carcinoma (PTC) incidence in surrounding regions, particularly for radioactive iodine (131I)-exposed children. We analyzed genomic, transcriptomic, and epigenomic characteristics of 440 PTCs from Ukraine (from 359 individuals with estimated childhood 131I exposure and 81 unexposed children born after 1986). PTCs displayed radiation dose-dependent enrichment of fusion drivers, nearly all in the mitogen-activated protein kinase pathway, and increases in small deletions and simple/balanced structural variants that were clonal and bore hallmarks of nonhomologous end-joining repair. Radiation-related genomic alterations were more pronounced for individuals who were younger at exposure. Transcriptomic and epigenomic features were strongly associated with driver events but not radiation dose. Our results point to DNA double-strand breaks as early carcinogenic events that subsequently enable PTC growth after environmental radiation exposure.The coenzyme nicotinamide adenine dinucleotide phosphate (NADP+) and its reduced form (NADPH) regulate reductive metabolism in a subcellularly compartmentalized manner. Mitochondrial NADP(H) production depends on the phosphorylation of NAD(H) by NAD kinase 2 (NADK2). Deletion of NADK2 in human cell lines did not alter mitochondrial folate pathway activity, tricarboxylic acid cycle activity, or mitochondrial oxidative stress, but rather led to impaired cell proliferation in minimal medium. This growth defect was rescued by proline supplementation. NADK2-mediated mitochondrial NADP(H) generation was required for the reduction of glutamate and hence proline biosynthesis. this website Furthermore, mitochondrial NADP(H) availability determined the production of collagen proteins by cells of mesenchymal lineage. Thus, a primary function of the mitochondrial NADP(H) pool is to support proline biosynthesis for use in cytosolic protein synthesis.Effects of radiation exposure from the Chernobyl nuclear accident remain a topic of interest. We investigated germline de novo mutations (DNMs) in children born to parents employed as cleanup workers or exposed to occupational and environmental ionizing radiation after the accident. Whole-genome sequencing of 130 children (born 1987-2002) and their parents did not reveal an increase in the rates, distributions, or types of DNMs relative to the results of previous studies. We find no elevation in total DNMs, regardless of cumulative preconception gonadal paternal [mean = 365 milligrays (mGy), range = 0 to 4080 mGy] or maternal (mean = 19 mGy, range = 0 to 550 mGy) exposure to ionizing radiation. Thus, we conclude that, over this exposure range, evidence is lacking for a substantial effect on germline DNMs in humans, suggesting minimal impact from transgenerational genetic effects.

Autoři článku: Churchillmcgarry9838 (Holman Mccall)