Choateknowles6567
The role of autoimmunity in central nervous system (CNS) disorders is rapidly expanding. In the last twenty years, different types of autoantibodies targeting subunits of ionotropic glutamate receptors have been found in a variety of patients affected by brain disorders. Several of these antibodies are directed against NMDA receptors (NMDAR), mostly in autoimmune encephalitis, whereas a growing field of research has identified antibodies against AMPA receptor (AMPAR) subunits in patients with different types of epilepsy or frontotemporal dementia. Several in vitro and in vivo studies performed in the last decade have dramatically improved our understanding of the molecular and functional effects induced by both NMDAR and AMPAR autoantibodies at the excitatory glutamatergic synapse and, consequently, their possible role in the onset of clinical symptoms. In particular, the method by which autoantibodies can modulate the localization at synapses of specific target subunits leading to functional impairments and behavioral alterations has been well addressed in animal studies. Overall, these preclinical studies have opened new avenues for the development of novel pharmacological treatments specifically targeting the synaptic activation of ionotropic glutamate receptors.Transitioning from traditional to new genotyping technologies requires the development of bridging methodologies to avoid extra genotyping costs. This study aims to identify the optimum number of single nucleotide polymorphisms (SNPs) necessary to accurately impute microsatellite markers to develop a low-density SNP chip for parentage verification in the Assaf sheep breed. The accuracy of microsatellite marker imputation was assessed with three metrics genotype concordance (C), genotype dosage (length r2), and allelic dosage (allelic r2), for all imputation scenarios tested (0.5-10 Mb microsatellite flanking SNP windows). The imputation accuracy for the three metrics analyzed for all haplotype lengths tested was higher than 0.90 (C), 0.80 (length r2), and 0.75 (allelic r2), indicating strong genotype concordance. The window with 2 Mb length provides the best accuracy for the imputation procedure and the design of an affordable low-density SNP chip for parentage testing. We additionally evaluated imputation performance under two null models, naive (imputing the most common allele) and random (imputing by randomly selecting the allele), which in comparison showed weak genotype concordances (0.41 and 0.15, respectively). Therefore, we describe a precise methodology in the present article to impute multiallelic microsatellite genotypes from a low-density SNP chip in sheep and solve the problem of parentage verification when different genotyping platforms have been used across generations.Grifola frondosa (G. frondosa), generally known as hen-of-the-woods or maitake in Japanese and hui-shu-hua in Chinese, is an edible mushroom with both nutritional and medicinal properties. PI3K inhibitor This review provides an up-to-date and comprehensive summary of research findings on its bioactive constituents, potential health benefits and major structural characteristics. Since the discovery of the D-fraction more than three decades ago, many other polysaccharides, including β-glucans and heteroglycans, have been extracted from the G. frondosa fruiting body and fungal mycelium, which have shown significant antitumor and immunomodulatory activities. Another class of bioactive macromolecules in G. frondosa is composed of proteins and glycoproteins, which have shown antitumor, immunomodulation, antioxidant and other activities. A number of small organic molecules such as sterols and phenolic compounds have also been isolated from the fungus and have shown various bioactivities. It can be concluded that the G. frondosa mushroom provides a diverse array of bioactive molecules that are potentially valuable for nutraceutical and pharmaceutical applications. More investigation is needed to establish the structure-bioactivity relationship of G. frondosa and to elucidate the mechanisms of action behind its various bioactive and pharmacological effects.Gemcitabine (Gem) and cisplatin (Cis) are currently being used for lung cancer treatment, but they are highly toxic in high dosages. This research aimed to develop a niosome formulation containing a low-dosage Gem and Cis (NGC), as an alternative formulation for lung cancer treatment. NGC was prepared using a very simple heating method and was further optimized by D-optimal mixture design. The optimum NGC formulation with particle size, polydispersity index (PDI), and zeta potential of 166.45 nm, 0.16, and -15.28 mV, respectively, was obtained and remained stable at 27 °C with no phase separation for up to 90 days. The aerosol output was 96.22%, which indicates its suitability as aerosolized formulation. An in vitro drug release study using the dialysis bag diffusion technique showed controlled release for both drugs up to 24 h penetration. A cytotoxicity study against normal lung (MRC5) and lung cancer (A549) cell lines was investigated. The results showed that the optimized NGC had reduced cytotoxicity effects against both MRC5 and A549 when compared with the control (Gem + Cis alone) from very toxic (IC50 less then 1.56 µg/mL) to weakly toxic (IC50 280.00 µg/mL) and moderately toxic (IC50 = 46.00 µg/mL), respectively, after 72 h of treatment. These findings revealed that the optimized NGC has excellent potential and is a promising prospect in aerosolized delivery systems to treat lung cancer that warrants further investigation.Nanopore-based sensing is a powerful technique for the detection of diverse organic and inorganic molecules, long-read sequencing of nucleic acids, and single-molecule analyses of enzymatic reactions. Selected from natural sources, protein-based nanopores enable rapid, label-free detection of analytes. Furthermore, these proteins are easy to produce, form pores with defined sizes, and can be easily manipulated with standard molecular biology techniques. The range of possible analytes can be extended by using externally added adapter molecules. Here, we provide an overview of current nanopore applications with a focus on engineering strategies and solutions.
Neuropathic pain is an injury or disease of the central and/or peripheral somatosensory nervous system, and it has a significant impact on quality of life, especially since it is often refractory to treatment. Rehabilitative intervention is considered in various guidelines on neuropathic pain treatment, although not in an organic nor detailed way. The aim of this systematic review was to analyze the most indicated therapeutic strategies, providing rehabilitative recommendations in the management of neuropathic pain.
A systematic review was performed according to PRISMA guidelines. The scientific search, carried out until July 2020, considered guidelines in English language of the last thirteen years.
Six guidelines were analyzed, from which emerges that a multidisciplinary approach, comprehensive of pharmacologic and nonpharmacologic interventions, should drive neuropathic pain management. A relevant role in non-pharmacological intervention is played by rehabilitation, through an adequate tailored rehabilitation program and physical therapies.
This analysis highlights the importance of rehabilitation but also the lack of evidence on various rehabilitative practices. Arises hence the need for further studies in this field to better define a rehabilitative treatment strategy.
This analysis highlights the importance of rehabilitation but also the lack of evidence on various rehabilitative practices. Arises hence the need for further studies in this field to better define a rehabilitative treatment strategy.Lightweight cement mortars containing end-of-life tire rubber (TR) as aggregate were prepared and characterized by rheological, thermal, mechanical, microstructural, and wetting tests. The mixtures were obtained after total replacement of the conventional sand aggregate with untreated TR with different grain sizes (0-2 mm and 2-4 mm) and distributions (25%, 32%, and 40% by weight). The mortars showed lower thermal conductivities (≈90%) with respect to the sand reference due to the differences in the conductivities of the two phases associated with the low density of the aggregates and, to a minor extent, to the lack of adhesion of tire to the cement paste (evidenced by microstructural detection). In this respect, a decrease of the thermal conductivities was observed with the increase of the TR weight percentage together with a decrease of fluidity of the fresh mixture and a decrease of the mechanical strengths. The addition of expanded perlite (P, 0-1 mm grain size) to the mixture allowed us to obtain mortars with an improvement of the mechanical strengths and negligible modification of the thermal properties. Moreover, in this case, a decrease of the thermal conductivities was observed with the increase of the P/TR dosage together with a decrease of fluidity and of the mechanical strengths. TR mortars showed discrete cracks after failure without separation of the two parts of the specimens, and similar results were observed in the case of the perlite/TR samples thanks to the rubber particles bridging the crack faces. The super-elastic properties of the specimens were also observed in the impact compression tests in which the best performances of the tire and P/TR composites were evidenced by a deep groove before complete failure. Moreover, these mortars showed very low water penetration through the surface and also through the bulk of the samples thanks to the hydrophobic nature of the end-of-life aggregate, which makes these environmentally sustainable materials suitable for indoor and outdoor elements.Equine atypical myopathy (AM) is seasonal intoxication resulting from the ingestion of seeds and seedlings of the sycamore maple (Acer pseudoplatanus) that contain toxins, among them, hypoglycin A (HGA). Literature mentions several cases of AM among gravid mares and in unweaned foals. The objective of this study was to determine whether HGA and/or its metabolite are present in milk from grazing mares exposed to sycamore maple trees as confirmed by detection of HGA and its metabolite in their blood. Four mare/foal couples were included in the study. Both HGA and its metabolite were detectable in all but one of the milk samples. To our knowledge, this is the first study describing transfer of HGA to the milk. This unprecedented observation could partially explain cases of unweaned foals suffering from AM. However, a transplacental transfer of the toxin cannot be excluded for newborn foals. Besides being a source of contamination for offspring, milk contamination by toxins from fruits of trees of the Sapindaceae family might constitute a potential risk for food safety regarding other species' raw milk or dairy products.Elucidation of the biological functions of extracellular vesicles (EVs) and their potential roles in physiological and pathological processes is an expanding field of research. In this study, we characterized USC-derived EVs and studied their capacity to modulate the human immune response in vitro. We found that the USC-derived EVs are a heterogeneous population, ranging in size from that of micro-vesicles (150 nm-1 μm) down to that of exosomes (60-150 nm). Regarding their immunomodulatory functions, we found that upon isolation, the EVs (60-150 nm) induced B cell proliferation and IgM antibody secretion. Analysis of the EV contents unexpectedly revealed the presence of BAFF, APRIL, IL-6, and CD40L, all known to play a central role in B cell stimulation, differentiation, and humoral immunity. In regard to their effect on T cell functions, they resembled the function of mesenchymal stem cell (MSC)-derived EVs previously described, suppressing T cell response to activation. The finding that USC-derived EVs transport a potent bioactive cargo opens the door to a novel therapeutic avenue for boosting B cell responses in immunodeficiency or cancer.