Carvershoemaker1262

Z Iurium Wiki

Mass spectrometry has increasingly been used as a tool to complement studies of sphingolipid metabolism and biological functions in plants and other eukaryotes. Mass spectrometry is now essential for comprehensive sphingolipid analytical profiling because of the huge diversity of sphingolipid classes and molecular species in eukaryotes, particularly in plants. This structural diversity arises from large differences in polar head group glycosylation as well as carbon-chain lengths of fatty acids and desaturation and hydroxylation patterns of fatty acids and long-chain bases that together comprise the ceramide hydrophobic backbone of glycosphingolipids. The standard methods for liquid chromatography-mass spectrometry (LC-MS)-based analyses of Arabidopsis thaliana leaf sphingolipids profile >200 molecular species of four sphingolipid classes and free long-chain bases and their phosphorylated forms. While these methods have proven valuable for A. thaliana based sphingolipid research, we have recently adapted them for use with ultraperformance liquid chromatography separations of molecular species and to profile aberrant sphingolipid forms in pollen, transgenic lines, and mutants. This chapter provides updates to standard methods for LC-MS profiling of A. thaliana sphingolipids to expand the utility of mass spectrometry for plant sphingolipid research.The plant lipidome is highly complex and changes dynamically under the influence of various biotic and abiotic stresses. Targeted analyses based on mass spectrometry enable the detection and characterization of the plant lipidome. It can be analyzed in plant tissues of different developmental stages and from isolated cellular organelles and membranes. Here, we describe a sensitive method to establish the relative abundance of molecular lipid species belonging to three lipid categories glycerolipids, sphingolipids, and sterol lipids. The method is based on a monophasic lipid extraction and includes the derivatization of a few rare and low-abundant lipid classes. The molecular lipid species are resolved by lipid class-specific reverse-phase liquid chromatography and detected by nanoelectrospray ionization coupled with tandem mass spectrometry. The triple quadrupole analyzer is used for detection with multiple reaction monitoring (MRM). Mass transition lists are constructed based on the knowledge of organism-specific lipid building blocks. They are initially determined by classical lipid analytical methods and then used for combinative assembly of all possible lipid structures. The targeted analysis enables detailed and comprehensive profiling of the entire lipid content and composition of plants.Total acyl lipid collision-induced dissociation time-of-flight (TAL-CID-TOF) mass spectrometry uses a quadrupole time-of-flight (QTOF) mass spectrometer to rapidly provide a comprehensive fatty acid composition of a biological lipid extract. Samples are infused into a QTOF instrument, operated in negative mode, and the quadrupole is used to transfer all, or a wide mass range of, precursor ions to the collision cell for fragmentation. Time-of-flight-acquired mass spectra provide mass accuracy and resolution sufficient for chemical formula determination of fatty acids in the complex mixture. Considering the limited number of reasonable CHO variants in fatty acids, one can discern acyl anions with the same nominal mass but different chemical formulas. An online application, LipidomeDB Data Calculation Environment, is employed to process the mass spectral output data and match identified fragments to target fragments at a resolution specified by the user. TAL-CID-TOF methodology is a useful discovery or screening tool to identify and compare fatty acid profiles of biological samples.Direct infusion or "shotgun" mass spectrometry provides a fast strategy to measure different classes of lipids, combining rapid analysis and short idle time. In contrast to liquid chromatography-mass spectrometry (LC-MS), the lipids are infused into the mass spectrometer without prior separation by liquid chromatography. Ions are separated in the quadrupole of a tandem mass spectrometer, and after collision-induced dissociation fragments are quantified relative to internal standards in the third quadrupole or in the time-of-flight mass analyzer of a triple quadrupole or quadrupole time of flight (Q-TOF) mass spectrometer. Abundant lipids, that is, galactolipids and phospholipids in leaves, are measured in crude lipid extracts, while less abundant lipids can be measured after enrichment by solid-phase extraction. Here we describe protocols for the quantification of the major plant glycerolipids (galactolipids, phospholipids, diacylglycerol, and triacylglycerol) using nanospray direct infusion mass spectrometry. This provides a strategy for comprehensive, highly sensitive, high-throughput lipidomic analyses.Algae are ecologically important organisms and are widely used for basic research, with a focus on for example photosynthesis, evolution, and lipid metabolism. Many biosynthetic pathways of algal lipids have been deciphered using available genomic information. Here we describe methods for lipid analyses from three representative algae, including Archaeplastida, the SAR lineage (Stramenopiles, Alveolata, Rhizaria), and Excavata. Archaeplastida acquired their plastids by primary endosymbiosis, and the others by secondary endosymbiosis with a Rhodophyceae-type plastid in SAR and a Chlorophyceae-type plastid in Excavata (Euglenozoa). Analytical methods for these algae are described for membrane lipids and neutral lipids including triacylglycerol and wax esters.Lipids are produced through a dynamic metabolic network involving branch points, cycles, reversible reactions, parallel reactions in different subcellular compartments, and distinct pools of the same lipid class involved in different parts of the network. For example, diacylglycerol (DAG) is a biosynthetic and catabolic intermediate of many different lipid classes. this website Triacylglycerol can be synthesized from DAG assembled de novo, or from DAG produced by catabolism of membrane lipids, most commonly phosphatidylcholine. Quantification of lipids provides a snapshot of the lipid abundance at the time they were extracted from the given tissue. However, quantification alone does not provide information on the path of carbon flux through the metabolic network to synthesize each lipid. Understanding lipid metabolic flux requires tracing lipid metabolism with isotopically labeled substrates over time in living tissue. [14C]acetate and [14C]glycerol are commonly utilized substrates to measure the flux of nascent fatty acids and glycerol backbones through the lipid metabolic network in vivo.

Autoři článku: Carvershoemaker1262 (Macias Gotfredsen)