Carltonhess2162

Z Iurium Wiki

All priming treatments improved seed emergence parameters, subsequent seedling photosynthesis and growth relative to the unprimed seeds. In general, cathodic water was most effective at invigorating deteriorated seeds. Analysis of the lipid peroxidation products and antioxidant enzyme activities in invigorated seeds provided support for the hypothesis that the effectiveness of cathodic water in invigoration of debilitated orthodox seeds in general and of pea and pumpkin seeds in particular derive from its ability to act as an antioxidant.Epilepsy is a common neurological disorder. There is still a lack of methods to accurately detect cortical activity and locate lesions. In this work, a flexible electrocorticography (ECoG) electrode array based on polydimethylsiloxane (PDMS)-parylene was fabricated to detect epileptiform activity under glutamate (Glu) and gamma-aminobutyric acid (GABA) modulation on primary somatosensory cortex of rats. The electrode with a thickness of 20 μm has good flexibility to establish reliable contact with the cortex. Fourteen recording sites with a diameter of 60 μm are modified by electroplating platinum black nanoparticles, which effectively improve the performance with lower impedance, obtaining a sensitive sensing interface. The electrode enables real-time capturing changes in neural activity under drug modulation. Under Glu modulation, neuronal populations showed abnormal excitability, manifested as hypsarrhythmia rhythm and continuous or periodic spike wave epileptiform activity, with power increasing significantly. Under GABA modulation, the excitement was inhibited, with amplitude and power reduced to normal. The flexible ECoG electrode array could monitor cortical activity, providing us with an effective tool for further studying epilepsy and locating lesions.Mycobacterium tuberculosis genome encodes over 80 toxin-antitoxin (TA) systems. While each toxin interacts with its cognate antitoxin, the abundance of TA systems presents an opportunity for potential non-cognate interactions. TA systems mediate manifold interactions to manage pathogenicity and stress response network of the cell and non-cognate interactions may play vital roles as well. To address if non-cognate and heterologous interactions are feasible and to understand the structural basis of their interactions, we have performed comprehensive computational analyses on the available 3D structures and generated structural models of paralogous M. tuberculosis VapBC and MazEF TA systems. For a majority of the TA systems, we show that non-cognate toxin-antitoxin interactions are structurally incompatible except for complexes like VapBC15 and VapBC11, which show similar interfaces and potential for cross-reactivity. For TA systems which have been experimentally shown earlier to disfavor non-cognate interactions, we demonstrate that they are structurally and stereo-chemically incompatible. For selected TA systems, our detailed structural analysis identifies specificity conferring residues. Thus, our work improves the current understanding of TA interfaces and generates a hypothesis based on congenial binding site, geometric complementarity, and chemical nature of interfaces. Overall, our work offers a structure-based explanation for non-cognate toxin-antitoxin interactions in M. tuberculosis.Environmental monitoring is one of the most dynamically developing branches of chemical analysis. In this area, the use of multidimensional techniques and methods is encouraged to allow reliable determinations of metal ions with portable equipment for in-field applications. In this regard, this study presents, for the first time, the capabilities of a polymer inclusion membrane (PIM) sensor to perform cadmium (II) determination in aqueous solutions by in situ visible (VIS) and Mid- Fourier transform infrared spectroscopy (MID-FTIR) analyses of the polymeric films, using a partial least squares (PLS) chemometric approach. The influence of pH and metal content on cadmium (II) extraction, the characterization of its extraction in terms of the adsorption isotherm, enrichment factor and extraction equilibrium were studied. check details The PLS chemometric algorithm was applied to the spectral data to establish the relationship between cadmium (II) content in the membrane and the absorption spectra. Furthermore, the developed MID-FTIR method was validated through the determination of the figures of merit (accuracy, linearity, sensitivity, analytical sensitivity, minimum discernible concentration difference, mean selectivity, and limits of detection and quantitation). Results showed reliable calibration curves denoting systems' potentiality. Comparable results were obtained in the analysis of real samples (tap, bottle, and pier water) between the new MID-FTIR-PLS PIM based-sensor and F-AAS.Silver nanoparticles were loaded in microfiltration membranes by sputtering technique for the development of biocidal properties and biofouling resistance. This technology allows good adhesion between silver nanoparticles and the membranes, and fast deposition rate. The microfiltration membranes (15 wt.% polyethersulfone and 7.5 wt.% polyvinylpyrrolidone in N,N-dimethylacetamide) were prepared by phase inversion method, and silver nanoparticles were deposited on their surface by the physical technique of vapor deposition in a sputtering chamber. The membranes were characterized by Field Emission Scanning Electron Microscopy, and the presence of silver was investigated by Energy-Dispersive Spectroscopy and X-ray Diffraction. Experiments of silver leaching were carried out through immersion and filtration tests. After 10 months of immersion in water, the membranes still presented ~90% of the initial silver, which confirms the efficiency of the sputtering technique. Moreover, convective experiments indicated that 98.8% of silver remained in the membrane after 24 h of operation. Biocidal analyses (disc diffusion method and biofouling resistance) were performed against Pseudomonas aeruginosa and confirmed the antibacterial activity of these membranes with 0.6 and 0.7 log reduction of viable planktonic and sessile cells, respectively. These results indicate the great potential of these new membranes to reduce biofouling effects.

Autoři článku: Carltonhess2162 (Valentin Baird)