Careynash8007

Z Iurium Wiki

Abscission in plants is tightly controlled by multiple phytohormones and the expression of various genes. However, whether the plant hormone brassinosteroids (BRs) are involved in this process is largely unknown. Here, we found that exogenous application of BRs reduced the ethylene-induced fruitlet abscission of litchi due to lower ethylene (ET) production and suppressed the expression of the ethylene biosynthetic genes LcACS1/4 and LcACO2/3 in the fruitlet abscission zone (FAZ). KB-0742 supplier Two genes that encode the BR core signaling components brassinazole resistant (BZR) proteins, namely, LcBZR1 and LcBZR2, were characterized. LcBZR1/2 were localized to the nucleus and acted as transcription repressors. Interestingly, the LcBZR1/2 transcript levels were not changed during ET-induced fruitlet abscission, while their expression levels were significantly increased after BR application. Moreover, gel shift and transient expression assays indicated that LcBZR1/2 could suppress the transcription of LcACS1/4 and LcACO2/3 by specifically binding to their promoters. Importantly, ectopic expression of LcBZR1/2 in Arabidopsis significantly delayed floral organ abscission and suppressed ethylene biosynthesis. Collectively, our results suggest that BRs suppress ET-induced fruitlet abscission through LcBZR1/2-controlled expression of genes related to ethylene biosynthesis in litchi. In addition, similar results were observed in the Arabidopsis gain-of-function mutant bzr1-1D, which showed delayed floral organ abscission in parallel with lower expression of ACS/ACO genes and reduced ethylene production, suggesting that the mechanism of BZR-controlled organ abscission via regulation of ethylene biosynthesis might be conserved in Arabidopsis.The Mildew Resistance Locus O (MLO) gene family has been investigated in many species. However, there are few studies on chrysanthemum MLO genes. We report in this study that CmMLO17 in Chrysanthemum morifolium was upregulated after Alternaria alternata infection. Silencing of CmMLO17 by artificial microRNA resulted in reduced susceptibility of chrysanthemum to A. alternata infection. Genes in the abscisic acid (ABA) and Ca2+ signaling pathways were upregulated in the CmMLO17-silenced line R20 compared to the wild-type plants. We speculated that CmMLO17-silenced plants had a faster and stronger defense response that was mediated by the ABA and Ca2+ signaling pathways, resulting in reduced susceptibility of chrysanthemum to A. alternata infection. In addition, a candidate gene, CmKIC, that may interact with CmMLO17 was discovered by the yeast two-hybrid assay. The interaction between CmMLO17 and CmKIC was confirmed using the yeast two-hybrid assay and bimolecular fluorescence complementation (BiFC) analysis. CmMLO17 and CmKIC were both located on the plasma membrane, and CmKIC was also located on the nucleus. CmKIC overexpression increased the susceptibility of chrysanthemum to A. alternata, whereas CmKIC silencing resulted in reduced susceptibility. Therefore, CmMLO17 and CmKIC may work together in C. morifolium to support the growth of A. alternata. The results of this study will provide insight into the potential function of MLO and improve the understanding of plant defense responses to necrotrophic pathogens.The growth of leaves and biosynthesis of characteristic secondary metabolites are critically important for tea production and quality control. However, little is known about the coordinated regulation of leaf development and catechin biosynthesis in tea plants. Here, we reported that TCP TFs are involved in both catechin biosynthesis and leaf development. An integrated analysis of catechin profiling and CsTCP expression in different tissues of plants under various environmental conditions at different developmental stages indicated significant correlations between the transcript levels of CIN-type TCPs and catechin production. CIN-type CsTCP3 and CsTCP4 and PCF-type CsTCP14 interacted with the MYB-bHLH-WD40 repeat (MBW) complex by forming a CsTCP3-CsTT8 heterodimer and modulating the transactivation activity of the promoters of anthocyanin synthase (CsANS1) and anthocyanidin reductase (CsANR1). Four types of microRNA/target modules, miR319b/CsTCP3-4, miR164b/CsCUC, miR396/CsGRF-GIF, and miR165b/HD-ZIPIII ones, were also identified and characterized for their functions in the regulation of the development of tea plant shoot tips and leaf shape. The results of these modules were reflected by their different expression patterns in developing buds and leaves that had distinctly different morphologies in three different tea plant varieties. Their roles in the regulation of catechin biosynthesis were also further verified by manipulation of microRNA319b (miR319b), which targets the transcripts of CsTCP3 and CsTCP4. Thus, CsTCPs represent at least one of these important groups of TFs that can integrate tea plant leaf development together with secondary metabolite biosynthesis. Our study provides new insight into shoot tip development and catechin production in tea plants and lays a foundation for further mechanistic understanding of the regulation of tea plant leaf development and secondary metabolism.Parthenocarpy is a valuable trait in self-incompatible plants, such as pear. N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU), a synthetic cytokinin analog, can induce parthenocarpy in pear (Pyrus spp.), but the mechanism of induction is unclear. To investigate the role of gibberellin in CPPU-induced parthenocarpy in pear, CPPU supplemented with paclobutrazol (PAC) was sprayed onto 'Dangshansu' pear. We found that the fruit set rate of pear treated with CPPU supplemented with PAC was identical to that in a CPPU-alone treatment group. In regard to cell development, CPPU mainly promoted hypanthium cell division and expansion, and PAC application had no influence on CPPU-induced cell development. RNA sequencing revealed that gibberellin 20 oxidase and gibberellin 3 oxidase genes were not differentially expressed following CPPU treatment. According to the analysis of fruit phytohormone content, the CPPU treatments did not induce gibberellin biosynthesis. These results suggest that CPPU-induced parthenocarpy may be gibberellin independent in 'Dangshansu' pear.

Autoři článku: Careynash8007 (Gillespie Saleh)