Cappsankersen7789

Z Iurium Wiki

Binocular vision is a passive method of simulating the human visual principle to perceive the distance to a target. Traditional binocular vision applied to target localization is usually suitable for short-range area and indoor environment. This paper presents a novel vision-based geolocation method for long-range targets in outdoor environment, using handheld electronic devices such as smart phones and tablets. This method solves the problems in long-range localization and determining geographic coordinates of the targets in outdoor environment. It is noted that these sensors necessary for binocular vision geolocation such as the camera, GPS, and inertial measurement unit (IMU), are intergrated in these handheld electronic devices. Zanubrutinib solubility dmso This method, employing binocular localization model and coordinate transformations, is provided for these handheld electronic devices to obtain the GPS coordinates of the targets. Finally, two types of handheld electronic devices are used to conduct the experiments for targets in long range up to 500m. The experimental results show that this method yields the target geolocation accuracy along horizontal direction with nearly 20m, achieving comparable or even better performance than monocular vision methods.Image registration is a required step in many practical applications that involve the acquisition of multiple related images. In this paper, we propose a methodology to deal with both the geometric and intensity transformations in the image registration problem. The main idea is to modify an accurate and fast elastic registration algorithm (Local All-Pass-LAP) so that it returns a parametric displacement field, and to estimate the intensity changes by fitting another parametric expression. Although we demonstrate the methodology using a low-order parametric model, our approach is highly flexible and easily allows substantially richer parametrisations, while requiring only limited extra computation cost. In addition, we propose two novel quantitative criteria to evaluate the accuracy of the alignment of two images ("salience correlation") and the number of degrees of freedom ("parsimony") of a displacement field, respectively. Experimental results on both synthetic and real images demonstrate the high accuracy and computational efficiency of our methodology. Furthermore, we demonstrate that the resulting displacement fields are more parsimonious than the ones obtained in other state-of-the-art image registration approaches.In this paper, a new statistical model is proposed for the single image super-resolution of retinal Optical Coherence Tomography (OCT) images. OCT imaging relies on interfero-metry, which explains why OCT images suffer from a high level of noise. Moreover, data subsampling is carried out during the acquisition of OCT A-scans and B-scans. So, it is necessary to utilize effective super-resolution algorithms to reconstruct high-resolution clean OCT images. In this paper, a nonlocal sparse model-based Bayesian framework is proposed for OCT restoration. For this reason, by characterizing nonlocal patches with similar structures, known as a group, the sparse coefficients of each group of OCT images are modeled by the scale mixture models. In this base, the coefficient vector is decomposed into the point-wise product of a random vector and a positive scaling variable. Estimation of the sparse coefficients depends on the proposed distribution for the random vector and scaling variable where the Laplacian random vector and Generalized Extreme-Value (GEV) scale parameter (Laplacian+GEV model) show the best goodness of fit for each group of OCT images. Finally, a new OCT super-resolution method based on this new scale mixture model is introduced, where the maximum a posterior estimation of both sparse coefficients and scaling variables are calculated efficiently by applying an alternating minimization method. Our experimental results prove that the proposed OCT super-resolution method based on the Laplacian+GEV model outperforms other competing methods in terms of both subjective and objective visual qualities.This paper presents an innovative method for motion segmentation in RGB-D dynamic videos with multiple moving objects. The focus is on finding static, small or slow moving objects (often overlooked by other methods) that their inclusion can improve the motion segmentation results. In our approach, semantic object based segmentation and motion cues are combined to estimate the number of moving objects, their motion parameters and perform segmentation. Selective object-based sampling and correspondence matching are used to estimate object specific motion parameters. The main issue with such an approach is the over segmentation of moving parts due to the fact that different objects can have the same motion (e.g. background objects). To resolve this issue, we propose to identify objects with similar motions by characterizing each motion by a distribution of a simple metric and using a statistical inference theory to assess their similarities. To demonstrate the significance of the proposed statistical inference, we present an ablation study, with and without static objects inclusion, on SLAM accuracy using the TUM-RGBD dataset. To test the effectiveness of the proposed method for finding small or slow moving objects, we applied the method to RGB-D MultiBody and SBM-RGBD motion segmentation datasets. The results showed that we can improve the accuracy of motion segmentation for small objects while remaining competitive on overall measures.Description-based person re-identification (Re-id) is an important task in video surveillance that requires discriminative cross-modal representations to distinguish different people. It is difficult to directly measure the similarity between images and descriptions due to the modality heterogeneity (the crossmodal problem). And all samples belonging to a single category (the fine-grained problem) makes this task even harder than the conventional image-description matching task. In this paper, we propose a Multi-granularity Image-text Alignments (MIA) model to alleviate the cross-modal fine-grained problem for better similarity evaluation in description-based person Re-id. Specifically, three different granularities, i.e., global-global, global-local and local-local alignments are carried out hierarchically. Firstly, the global-global alignment in the Global Contrast (GC) module is for matching the global contexts of images and descriptions. Secondly, the global-local alignment employs the potential relations between local components and global contexts to highlight the distinguishable components while eliminating the uninvolved ones adaptively in the Relation-guided Global-local Alignment (RGA) module.

Autoři článku: Cappsankersen7789 (Svensson McHugh)