Buchtate5533
Others are the result of my experience in other situations.Ultraviolet resonance Raman (UVRR) spectroscopy is a powerful vibrational spectroscopic technique for the label-free monitoring of molecular recognition of peptides or proteins with supramolecular ligands such as guanidiniocarbonyl pyrroles (GCPs). The use of UV laser excitation enables Raman binding studies of this class of supramolecular ligands at submillimolar concentrations in aqueous solution and provides a selective signal enhancement of the carboxylate binding site (CBS). A current limitation for the extension of this promising UVRR approach from peptides to proteins as binding partners for GCPs is the UV-excited autofluorescence from aromatic amino acids observed for laser excitation wavelengths >260 nm. These excitation wavelengths are in the electronic resonance with the GCP for achieving both a signal enhancement and the selectivity for monitoring the CBS, but the resulting UVRR spectrum overlaps with the UV-excited autofluorescence from the aromatic binding partners. This necessitates the use of lar recognition is based on the results from density functional theory (DFT) calculations.Imidazo[1,5-a]pyridines were efficiently prepared via the cyclization of 2-picolylamines with nitroalkanes electrophilically activated in the presence of phosphorous acid in polyphosphoric acid (PPA) medium.A waste biomass, sodium lignosulfonate, was treated with sodium 2-formylbenzenesulfonate, and the phenylaldehyde condensation product was then used as a robust supporting material to immobilize a copper species. The so-obtained catalyst was characterized by many physicochemical methods including FTIR, EA, FSEM, FTEM, XPS, and TG. This catalyst exhibited excellent catalytic activity in the synthesis of nitrogen-containing heterocycles such as tricyclic indoles bearing 3,4-fused seven-membered rings, 2‑arylpyridines, aminonaphthalenes and 3-phenylisoquinolines. In addition, this catalyst showed to be recyclable and could be reused several times without significant loss in activity during the course of the reaction process.In this work, we have developed a simple synthetic approach using Et3N·3HF as an alternative to the DAST reagent. We controlled the stereochemistry of the nucleophilic fluorination at C4 of 1,6-anhydro-2,3-dideoxy-2,3-difluoro-4-O-triflate-β-ᴅ-talopyranose using Et3N·3HF or in situ generated Et3N·1HF. The influence of the fluorine atom at C2 on reactivity at C4 could contribute to a new fluorine effect in nucleophilic substitution. Finally, with the continuous objective of synthesizing novel multi-vicinal fluorosugars, we prepared one difluorinated and one trifluorinated alditol analogue.For the first time, a metal-mediated base pair has been used to modulate the affinity of an aptamer towards its target. In particular, two artificial imidazole 2'-deoxyribonucleosides (Im) were incorporated into various positions of an established ATP-binding aptamer (ATP, adenosine triphosphate), resulting in the formation of three aptamer derivatives bearing ImIm mispairs with a reduced ATP affinity. A fluorescence spectroscopy assay and a binding assay with immobilized ATP were used to evaluate the aptamer derivatives. Upon the addition of one Ag(I) ion per mispair, stabilizing Im-Ag(I)-Im base pairs were formed. As a result, the affinity of the aptamer derivative towards ATP is restored again. The silver(I)-mediated base-pair formation was particularly suitable to modulate the aptamer function when the ImIm mispairs (and hence the resulting metal-mediated base pairs) were located close to the ATP-binding pocket of the aptamer. Being able to trigger the aptamer function opens new possibilities for applications of oligonucleotides.A rapid route for obtaining unsymmetrical 1,2-dihydropyridines (1,2-DHPs) as opposed to 1,4-dihydropyridines (1,4-DHPs) has been achieved via a one-pot multicomponent Hantzsch reaction. A benign protocol has been developed for the preparation of various 1,2-dihydropyridine derivatives using heterogenized phosphotungstic acid on alumina support (40 wt %). High yields of over 75% have been accomplished in just 2-3.5 h after screening several heterogeneous catalysts and investigating the optimal reaction conditions. The catalyst chosen has passed the heterogeneity test and was shown to have the potential of being reused for up to 8 consecutive cycles before having a significant loss in activity. In addition, aromatic aldehydes gave the aforementioned regioisomer while the classical 1,4-DHPs were obtained when carrying out the reaction using aliphatic aldehydes. The preliminary study of the antiproliferative activity against human solid tumor cells demonstrated that 1,2-DHPs could inhibit cancer cell growth in the low micromolar range.Synthesis of site-specifically modified oligonucleotides has become a major tool for RNA structure and function studies. Reporter groups or specific functional entities are required to be attached at a pre-defined site of the oligomer. An attractive strategy is the incorporation of suitably functionalized building blocks that allow post-synthetic conjugation of the desired moiety. A C8-alkynyl-modified adenosine derivative was synthesized, reviving an old synthetic pathway for iodination of purine nucleobases. selleckchem Silylation of the C8-alkynyl-modified adenosine revealed unexpected selectivity of the two secondary sugar hydroxy groups, with the 3'-O-isomer being preferentially formed. Optimization of the protection scheme lead to a new and economic route to the desired C8-alkynylated building block and its incorporation in RNA.Platelet-rich plasma (PRP) has been fully studied for different clinical applications in veterinary medicine for many years with promising results. As a result, therapeutic studies to elucidate pathways for PRP use in human reproduction have been performed. PRP applications in human reproductive medicine are recent, but the role of platelet growth factors in improving the endometrial environment is well known. Indications for PRP therapy show its positive effects in promoting endometrial and follicular growth and gestation in assisted reproduction cycles, as has been proven in animals. We summarized the putative role of PRP on endometrial receptivity with a brief history of promising results in research and clinical therapies.Besides having medical applications, comparative studies on reproductive biology are very useful, providing, for instance, essential knowledge for basic, conservation and biotechnological research. In order to maintain the reproductive potential and the survival of all vertebrate species, both sperm and steroid production need to occur inside the testis. From the approximately fifty thousand vertebrate species still alive, very few species are already investigated; however, our knowledge regarding Sertoli cell biology is quite good. In this regard, it is already known that since testis differentiation the Sertoli cells are the somatic cells in charge of supporting and orchestrating germ cells during development and full spermatogenesis in adult animals. In the present review, we highlight key aspects related to Sertoli cell biology in vertebrates and show that this key testis somatic cell presents huge and intrinsic plasticity, particularly when cystic (fish and amphibians) and non-cystic (reptiles, birds and mammals) spermatogenesis is compared. In particular, we briefly discuss the main aspects related to Sertoli cells functions, interactions with germ cells, Sertoli cells proliferation and efficiency, as well as those regarding spermatogonial stem cell niche regulation, which are crucial aspects responsible for the magnitude of sperm production. Most importantly, we show that we could greatly benefit from investigations using different vertebrate experimental models, mainly now that there is a big concern regarding the decline in human sperm counts caused by a multitude of factors.Different approaches can be used to assess sperm function in different conditions, i.e. sperm storage, freezing-thawing or activation by induction of capacitation and acrosome reaction. In this review we will focus on the assays routinely performed in our laboratories, giving a literature support to critically analyse different approaches. In fact, researchers usually tend to look for the "one shot" parameter that could explain itself a specific process; it is our conviction that a multiparametric approach is still more valid, as some changes in sperm function are very complex and could be explained only by operating in different ways. Sperm motility, the most evident sperm characteristic, should be assessed by computer-aided sperm analysers that permit an objective evaluation of the motility and its kinematic parameters. Commercial and open source instruments are available and could be profitably used together with specific statistical approaches. The use of microscopy, and particularly fluorescent microscopy, could be a very useful tool to assess different parameters in sperm cells both by fluorophores that give indication of a determined function, and by immunolocalization of proteins, that permits the discover of new features or to explain particular sperm functions. The same substrates could be used also in flow cytometry the difference is that it permits to study wider sperm populations (and their sub-population distribution). Flow cytometry is undergoing a very wide use in spermatology and technical and experimental rigor is needed to obtain reliable results. Metabolic assessment of sperm features, particularly energetic supply, ATP formation and other enzyme activities, could represent a very important challenge to acquire new information and complete/integrate those derived from other techniques. Finally, functional assays such as oocyte binding and in vitro fertilization, represent a very strong tool to assess sperm function in vitro, as they could evidence the functional intactness of some pathways.Intrauterine growth restriction (IUGR) is a serious condition of multifactorial origin, mainly caused by maternal malnutrition, multiple gestation associated with nutrient competition, abuse of nocive substances and infections. The diagnosis of such syndrome is complex, as its own manifestations can mask its occurrence, requiring a thorough assessment of body weight and size. Moreover, it is not responsive to any kind of treatment. There is evidence that IUGR may predispose the individual to several pathologies, such as diabetes, hypertension and metabolic syndrome in adulthood, and it has also been linked to thrifty phenotype hypothesis. Thus, a healthy lifestyle is needed to better prevent those pathologies. Given the world high prevalence and importance of IUGR, mainly in developing countries, this review is focused on discussing how different animal models contribute to the biological screening and diagnosis of this condition.Different bioengineering strategies can be presently adopted and have been shown to have great potential in the treatment of female infertility and ovarian dysfunction deriving from chemotherapy, congenital malformations, massive adhesions as well as aging and lifestyle. One option is transplantation of fresh or cryopreserved organs/fragments into the patient. A further possibility uses tissue engineering approaches that involve a combination of cells, biomaterials and factors that stimulate local ability to regenerate/ repair the reproductive organ. Organ transplant has shown promising results in large animal models. However, the source of the organ needs to be identified and the immunogenic effects of allografts remain still to be solved before the technology may enter the clinical practice. Decellularization/ repopulation of ovary with autologous cells or follicles could represent an interesting, still very experimental alternative. Here we summarize the recent advancements in the bioengineering strategies applied to the ovary, we present the principles for these systems and discuss the advantages of these emerging opportunities to preserve or improve female fertility.