Britttrevino1500
The global pandemic has resulted from the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19). To control the spread of the pandemic, SARS-CoV-2 vaccines have been developed. Messenger ribonucleic acid (mRNA)-based COVID-19 vaccines have been the most widely used. We present the case of a 65-year-old patient, who was diagnosed with acute disseminated encephalomyelitis, ocular myasthenia gravis, and autoimmune thyroiditis, following his third mRNA COVID-19 vaccination. On admission, the patient showed mild left-sided hemiparesis, contralateral dissociated sensory loss, dizziness, and right-sided deafness. Brain MRI revealed multiple acute inflammatory contrast-enhancing periventricular and brainstem lesions with involvement of vestibulo-cerebellar tract and cochlear nuclei. Despite steroid pulse and intravenous immunoglobulin therapy, clinical symptoms and MRI lesions worsened, and additional signs of ocular myasthenia gravis and elevated but asymptomatic thyroid antibodies developed. After repeated plasma exchange, all clinical symptoms resolved. This is, to the best of our knowledge, the first case report of multiple autoimmune syndromes triggered by COVID-19 vaccination. The rare occurrence of such treatable autoimmune complications should not question the importance of vaccination programs during the COVID-19 pandemic.Amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) are neurodegenerations with evolutionary underpinnings, expansive clinical presentations, and multiple genetic risk factors involving a complex network of pathways. This perspective considers the complex cellular pathology of aging motoneuronal and frontal/prefrontal cortical networks in the context of evolutionary, clinical, and biochemical features of the disease. We emphasize the importance of evolution in the development of the higher cortical function, within the influence of increasing lifespan. Particularly, the role of aging on the metabolic competence of delicately optimized neurons, age-related increased proteostatic costs, and specific genetic risk factors that gradually reduce the energy available for neuronal function leading to neuronal failure and disease.Stroke is the second most common cause of global death following coronary artery disease. Time is crucial in managing stroke to reduce the rapidly progressing insult of the ischemic penumbra and the serious neurologic deficits that might follow it. Strokes are mainly either hemorrhagic or ischemic, with ischemic being the most common of all types of strokes. Thrombolytic therapy with recombinant tissue plasminogen activator and endovascular thrombectomy are the main types of management of acute ischemic stroke (AIS). In addition, there is a vital need for neuroprotection in the setting of AIS. Neuroprotective agents are important to investigate as they may reduce mortality, lessen disability, and improve quality of life after AIS. In our review, we will discuss the main types of management and the different modalities of neuroprotection, their mechanisms of action, and evidence of their effectiveness after ischemic stroke.
This study aims to detect the invisible metabolic abnormality in PET images of patients with anti-leucine-rich glioma-inactivated 1 (LGI1) encephalitis using a multivariate cross-classification method.
Participants were divided into two groups, namely, the training cohort and the testing cohort. The training cohort included 17 healthy participants and 17 patients with anti-LGI1 encephalitis whose metabolic abnormality was able to be visibly detected in both the medial temporal lobe and the basal ganglia in their PET images [completely detectable (CD) patients]. The testing cohort included another 16 healthy participants and 16 patients with anti-LGI1 encephalitis whose metabolic abnormality was not able to be visibly detected in the medial temporal lobe and the basal ganglia in their PET images [non-completely detectable (non-CD) patients]. Independent component analysis (ICA) was used to extract features and reduce dimensions. A logistic regression model was constructed to identify the non-CD patients.
d patterns that were similar to those seen in CD patients.
The aim of this study was to show with three-dimensional simulations how the diagnostic supine roll test (SRT) is affected by the initial position of the debris within the horizontal canal (hc) and study the nystagmus patterns on changing the sequence of testing and its impact on the diagnosis of the side of involvement in hc-BPPV.
A 3D dynamic simulation model was developed and applied based on reconstructed MRI images and fluid dynamics. Each semicircular canal was linked to the respective extraocular muscles to visualize nystagmus generated on stimulation of the canal.
The simulations of hc-canalithiasis showed that the nystagmus pattern seen with the SRT is changed by the initial position of the otolith debris within the canal and the sequence of testing. The debris changes position during SRT so that sequential steps do not start at the initial position as previously assumed. The sequence of performing the SRT steps from the right or left side influences the nystagmus pattern generated bilateral diuence of positional tests should be established to ensure uniform interpretation of test results.
Frailty is a state of cumulative degradation of physiological functions that leads to adverse outcomes such as disability or mortality. Currently, there is still little understanding of the prognosis of pre-stroke frailty status with acute cerebral infarction in the elderly.
We investigated the association between pre-stroke frailty status, 28-day and 1-year survival outcomes, and functional recovery after acute cerebral infarction.
Clinical data were collected from 314 patients with acute cerebral infarction aged 65-99 years. A total of 261 patients completed follow-up in the survival cohort analysis and 215 patients in the functional recovery cohort analysis. Pre-stroke frailty status was assessed using the FRAIL score, the prognosis was assessed using the modified Rankin Scale (mRS), and disease severity using the National Institutes of Health Stroke Scale (NIHSS).
Frailty was independently associated with 28-day mortality in the survival analysis cohort [hazard ratio (HR) = 4.30, 95%
1.35-13.67day or 1-year severe disability. Age, the NIHSS score, and co-infection are likewise independent risk factors for 1-year mortality.
To analyze the interictal discharge (IID) patterns on pre-operative scalp electroencephalogram (EEG) and compare the changes in IID patterns after removal of epileptogenic tubers in preschool children with tuberous sclerosis complex (TSC)-related epilepsy.
Thirty-five preschool children who underwent resective surgery for TSC-related epilepsy were enrolled retrospectively, and their EEG data collected before surgery to 3 years after surgery were analyzed.
Twenty-three (65.7%) patients were seizure-free post-operatively at 1-year follow-up, and 37-40% of post-operative patients rendered non-IID on scalp EEGs, and patients with focal IIDs or generalized IID patterns on pre-operative EEG presented a high percentage of normal post-operative scalp EEGs. IID patterns on pre-operative scalp EEGs did not influence the outcomes of post-operative seizure controls, while patients with non-IID and focal IID on post-operative EEGs were likely to achieve post-operative seizure freedom. Patients with new focal IIDs presented a significantly lower percentage of seizure freedom than those without new focal IIDs on post-operative EEGs at 3-year follow-up.
Over 1/3 children with TSC presented normal scalp EEGs after resective epileptsy surgery. Patients with post-operative seizure freedom were more likely to have non-IIDs on post-operative EEGs. New focal IIDs were negative factors for seizure freedom at the 3-year follow-up.
Over 1/3 children with TSC presented normal scalp EEGs after resective epileptsy surgery. Patients with post-operative seizure freedom were more likely to have non-IIDs on post-operative EEGs. New focal IIDs were negative factors for seizure freedom at the 3-year follow-up.Cognitive deficits occur in most patients with stroke and are the important predictors of adverse long-term outcome. Early identification is fundamental to plan the most appropriate care, including rehabilitation and discharge decisions. The Oxford Cognitive Screen (OCS) is a simple, valid, and reliable tool for the assessment of cognitive deficits in patients with stroke. It contains 10 subtests, providing 14 scores referring to 5 theoretically derived cognitive domains attention, language, number, praxis, and memory. However, an empirical verification of the domain composition of the OCS subtests in stroke data is still lacking in the literature. A principal component analysis (PCA) was performed on 1,973 patients with stroke who were enrolled in OCS studies in the UK and in Italy. A number of six main components were identified relating to the domains of language and arithmetic, memory, visuomotor ability, orientation, spatial exploration, and executive functions. Bootstrapped split-half reliability analysis on patients and comparison between patients and 498 healthy participants, as that between patients with left and right hemisphere damage, confirmed the results obtained by the principal component analysis. A clarification about the contribution of each score to the theoretical original domains and to the components identified by the PCA is provided with the aim to foster the usability of OCS for both clinicians and researchers.
Acute symptomatic seizures (ASz) after ischemic stroke are associated with increased mortality; therefore, identifying predictors of ASz is important. The purpose of this study was to analyze predictors of ASz in a population of patients with ischemic stroke due to large arterial vessel occlusion (LVO).
This retrospective study examined patients with acute ischemic stroke caused by LVO between 2016 and 2020. Identification of predictive factors was performed using univariate and subsequent multiple logistic regression analysis. In addition, subgroup analysis regarding seizure semiology and time of seizure occurrence (≤ 24 h and > 24 h after stroke) was performed.
The frequency of ASz among 979 patients was 3.9 % (
= 38). Univariate logistic regression analysis revealed an increased risk of ASz in patients with higher National Institutes of Health Stroke Scale (NIHSS) score at admission or 24 h after admission, hypernatremia at admission ≥ 145 mmol/L, and pneumonia. Further multiple logistic regression analysis revealed that NIHSS 24 h after admission was the strongest predictor of ASz, particularly relating to ASz occurring later than 24 h after stroke. Patients who experienced a seizure within the first 24 h after stroke were more likely to have a generalized tonic-clonic (GTCS) and focal motor seizure; beyond 24 h, seizures with impaired awareness and non-convulsive status epilepticus were more frequent.
NIHSS score 24 h after admission is a strong predictive factor for the occurrence of ASz in patients with ischemic stroke caused by LVO. The semiology of ASz varied over time, with GTCS occurring more frequently in the first 24 h after stroke.
NIHSS score 24 h after admission is a strong predictive factor for the occurrence of ASz in patients with ischemic stroke caused by LVO. Corn Oil cost The semiology of ASz varied over time, with GTCS occurring more frequently in the first 24 h after stroke.